
HATP

User Documentation

September 2012

by

J. GUITTON

julien.guitton@laas.fr
julio38@gmail.com

Date Author Comment

April 2013 Raphaël Lallement
raphael.lallement@laas.fr

Add information about default value for every attribute type.

HATP User Documentation September 2012

Table of Contents
1 Introduction...3

1.1 Overview of the document..3
1.2 Human-Aware Task Planner...3

1.2.1 Task planning..3
1.2.2 HTN planning..3
1.2.3 Agents and action streams...4
1.2.4 Action costs and social rules..4

2 The HATP formalism..5
2.1 Entities and attributes...5

2.1.1 Static vs dynamic attributes..5
2.1.2 Atom or set attribute types...5
2.1.3 Declaration of an entity ..5

2.2 Actions and Methods..6
2.2.1 Actions..6
2.2.2 Methods..6

2.3 Operations in preconditions and effects...7
2.3.1 Operations in preconditions..7
2.3.2 Operations in effects...8

2.4 Logical expressions..8
2.4.1 Conjunction...8
2.4.2 Disjunction..8
2.4.3 Negation...9

2.5 Variable assignment / substitution..9
2.5.1 Free variable...9
2.5.2 First satisfier precondition..10
2.5.3 Sorted precondition..10

2.6 Quantification..10
2.6.1 Universal quantifier...10
2.6.2 Existential quantifier...11

2.7 Call term and conditional effect..11
2.7.1 Call term...11
2.7.2 Conditional effect..11

2.8 Cost, duration and social rules...12
2.8.1 Cost and duration functions..12
2.8.2 Social rules...13
2.8.3 Setting up costs..15

2.9 Planning domain and problem..15
2.9.1 Organization of the planning domain file..15
2.9.2 Defining a problem...16

2.10 HATP Extension: Belief Management..17
2.10.1 The agents: myself and the others...17
2.10.2 Beliefs representation...17
2.10.3 Known and unknown information...18
2.10.4 Communication actions..18
2.10.5 General communication method..19

J. Guitton 1 CNRS-LAAS

HATP User Documentation September 2012

3 Installing HATP...20
3.1 HATPOnboard...20
3.2 MsgConnector...20
3.3 HATPConsole...21
3.4 LibHATP..22

4 Running HATP..23
4.1 How works HATP ?...23

4.1.1 Overview of the planning system...23
4.1.2 Planning process..23
4.1.3 Important files of HATPOnboard..24

4.2 Launching the system...24
4.3 Communication with HATP...25

4.3.1 Communication API..25
4.3.2 Basic communication syntax..26
4.3.3 Requests syntax...26
4.3.4 Answer of HATP...27

4.4 Manipulation of plans..28
4.4.1 LibHATP..28
4.4.2 A simple application..29

A The “Clean The Table” domain..31
B The “Dock Worker Robot” domain...35

J. Guitton 2 CNRS-LAAS

HATP User Documentation September 2012

1 Introduction

This document aims at presenting the basis of HATP: How to use it, how to write a planning
domain, how to launch the planner and the attached third part modules, how to manipulate a
plan produced by HATP...

1.1 Overview of the document

This document is divided in three parts. The first part describes the HATP planning language
and explains how to write a planning domain. The second part presents the different modules
composing the HATP framework and how to install them. The last part explains how to use
HATP and how to manipulate a plan produced by the planner.

1.2 Human-Aware Task Planner

HATP stands for Human-Aware Task Planner. It has been initiated during the PhD of Vincent
Montreuil1 then completed during the PhD of Samir Alili2. Finally I have debugged it and
added some useful abilities between 2010 and 2012.

HATP is a centralized multi-agent planner. It is able to produce plans simultaneously for all the
involved agents. It can be tuned by setting up different costs depending on the actions to
apply and by taking into account a set of global constraints called social rules. This tuning
aims at adapting the agent's behaviors according to some preferences and to the desired
level of cooperation between the agents.

1.2.1 Task planning

Task planning is a symbolic reasoning aiming at construction a plan of actions, allowing to
reach a goal state starting from an initial state. Actions are instances of operators defined by a
set of preconditions and a set of effects. Preconditions are conditions that must be true in the
current state in order to apply the action. Effects model the changes in the environment
resulting from the achievement of the chosen action.

1.2.2 HTN planning

HATP is a HTN planner. The aim of Hierarchical Task Planning is to decompose a high-level
task representing the goal to achieve into a set of sub-tasks until reaching atomic tasks that
are achievable by the agents.

One of the most well-known HTN planning is SHOP2. Problems solved with SHOP2 can be
translated quite easily into the HATP formalism and solved in a time quite similar to the time

1 V. Montreuil - “Interaction Décisionnelle homme-robot : la planification de tâches au service de la sociabilité du robot ”, 2008

2 S. Alili - “Interaction Décisionnelle Homme-Robot : Planification de tâche pour un robot interactif en environnement humain”, 2010

J. Guitton 3 CNRS-LAAS

HATP User Documentation September 2012

taken by SHOP2.

1.2.3 Agents and action streams

The planner produces actions for all the agents involved in the problem. The resulting plan,
called “shared plan”, is a set of actions that forms a stream for each agent. Depending on the
context, some shared plans contain causal relations between the agent's streams. For
example, the second agent needs to wait for the success of the first agent's action. When the
plan is performed, these causal links induce some synchronizations between agents.

1.2.4 Action costs and social rules

To each action is associated a cost function and a duration function. The duration function
provides a duration interval for the action achievement and is used, on the one hand, as a
timeline to schedule the different streams and, on the other hand, as an additional cost
function.

In addition to these costs, HATP takes as an entry a set of global rules called social rules.
Social rules are constraints aiming at leading the plan construction towards the best plan
according to some preferences. The main rules are:

• Undesirable state
• Undesirable sequence
• Effort balancing
• Wasted time
• Control of intricacy
• Bad decomposition

J. Guitton 4 CNRS-LAAS

HATP User Documentation September 2012

2 The HATP formalism

Classically in automated symbolic planning, the facts describing the world state are defined in
a formalism based on the first order logic (e.g. PDDL). HATP uses an object-oriented
modeling language in which each element of the environment is defined as a distinct object.
This language has nearly the same expressive power and features than SHOP2.

2.1 Entities and attributes

An object is called entity and its characteristics are defined by a set of attributes. Each entity
is unique but refers to a class or type of entity regrouping the objects of same type. This type
is characterized by a name and a set of attributes.

2.1.1 Static vs dynamic attributes

Attributes are defined to be static or dynamic. A static attribute represents a non-modifiable
information whereas a dynamic attribute can be updated during the search.

2.1.2 Atom or set attribute types

An attribute can be an atom and then can take on value at a time or it can be a set and in this
case it is used to store multiple values. These values have a type than can be an entity or a
predefined type: string, bool or number.

The default value for each type is:

Type Value Type Value

bool false string “”

number 0.0 Entity NULL

2.1.3 Declaration of an entity

The type of an entity is defined using the keywords define entityType followed by the name
of the entity type:

Then, for each entity type, the corresponding set of attributes is defined using the keywords
define entityAttributes. For example:

J. Guitton 5 CNRS-LAAS

define entityType Location;

HATP User Documentation September 2012

2.2 Actions and Methods

The aim of HTN planning is to decompose tasks of high level into sub-tasks until reaching
primitive tasks that cannot be decomposed. High level tasks are described through a structure
called method and primitive tasks are represented by actions.

2.2.1 Actions

Actions are defined by a set of preconditions, a set of effects, a reference to a cost function
and a reference to a duration function:

2.2.2 Methods

A method is described by a precondition called empty condition and a set of decomposition.
This empty condition aims at providing a stop point in the development of the current branch
of the planning tree. A decomposition models one way to decompose the current task into
sub-tasks and is defined by a set of preconditions and a set of sub-tasks:

J. Guitton 6 CNRS-LAAS

define entityAttributes Agent {
static atom string type;
dynamic atom Location at;
dynamic atom Container loaded;

}
define entityAttributes Location {

static set Location adjacent;
dynamic atom bool occupied;
dynamic atom Agent isForbiddenBy;

}

method Navigate(Agent R, Location To) {
empty {R.at == To;};
{

preconditions {};
subtasks {

From = SELECT(Location, {R.at == From;});
1: NavFromTo(R, From, To);

};
}
{

// another decomposition...
}

}

action Move(Agent R, Location From, Location To) {
preconditions {

R.type == "ROBOT";
To >> From.adjacent;
R.at == From;
To.occupied == false;

};
effects {

R.at = To;
From.occupied = false;
To.occupied = true;

};
cost{costFn(1)};
duration{durationFn(1, 1)};

}

The entity type Agent is mandatory and predefined. But the specification of its attributes is free.

HATP User Documentation September 2012

The sub-tasks can be partially or totally ordered. In the last case, the order must be explicit
and is encoded by the symbol > followed by the numeric Id of the previous task, after the
name of a sub-tasks : (you can specify several sub-tasks, see last line in next example)

2.3 Operations in preconditions and effects

Manipulation of entities and attributes are done with specific operators. In this section, we
present these operators allowing to compare values in preconditions and to update them in
effects.

2.3.1 Operations in preconditions

Comparison operators can be regrouped into two class: operators for testing values of atoms
and operators for testing values of set.

Atom testing operators

To test if an atom is equal to a value, the operator == is used. The operator != stands for
different. The left part and the right part of the comparison expression must be of the same
type: a number with a number, a string with a string, a boolean with a boolean and an entity
with an entity.

For booleans, the keywords true and false represent the corresponding values. To test if a
variable of type entity is declared, the keyword NULL is used.

Numerical comparisons are done with the operators <, <=, >, >= (inferior, inferior or equal,
superior, superior or equal).

J. Guitton 7 CNRS-LAAS

subtasks {
1: Take(G, K, SourcePile);
2: Put(G, K, TargetPile)>1;
3: Pull(G, K, SourcePile);
4: TakeAndPutAll(SourcePile, TargetPile)>2,>3;

};

// R1 and R2 are two entities of type Agent
R1 != R2; // comparison of entities
R1.fuel == 100; // comparison of numbers
R1.type == "ROBOT"; // comparison of strings
R1.type == R2.type; // comparison of strings
R1.isReady == true; // comparison of booleans
R1 != null // comparison of entities (existence)

R1.fuel < 100;
R1.fuel >= 100;

An empty empty precondition will always be evaluated to true and the method will never be decomposed.

HATP User Documentation September 2012

Set testing operators

The operator >> is used to test if a value is a member of a set and !>> if the value is absent of
this set. To get the number of elements in a set, we can use the keyword .size()

2.3.2 Operations in effects

In the same way, we have defined modification operators for atoms and modification
operators for sets.

Atom modification

The assignment of a new value to an atom is done through the operator =. Left and right part
of the expression must have the same type.

Set modification

To insert an element into a set, the operator is <<= and to remove an element from a set, the
operator is =>>. The inserted or deleted element must be of the same type than the set.

When inserting an element of type entity, only a reference to this entity is inserted. When
inserting twice a same value, the set is not changed.

2.4 Logical expressions

In the first order logic, predicates in preconditions can be of the form: conjunction, disjunction
or negation. HATP don't use the first order logic but the formalism is similar.

2.4.1 Conjunction

By default, the set of preconditions forms an implicit conjunction. For example :

J. Guitton 8 CNRS-LAAS

// R1, R2 and R3 are entities of type Agent
R1.friends.size() > 0; // R1 should have at least one friend
R2 >> R1.friends; // R2 should be a friend of R1
R3 !>> R1.friends; // R3 must not be a friend of R1

R1.type = "ROBOT";
R1.fuel = 100;
R1.isReady = true;

R1.friends <<= R2; // R2 is now a friend of R1
R1.friends =>> R2; // R2 is not anymore a friend of R1

R1.friends <<= R2;
R1.friends <<= R2;
// R1.friends.size() == 1

HATP User Documentation September 2012

2.4.2 Disjunction

In HATP, it is possible to use disjunctions when defining preconditions. These disjunction must
be explicit and are applied to two conjunctions:

In this example, the preconditions are verified if R is a car and has 100 units of fuel or if R is a
truck and has 150 units of fuel.

2.4.3 Negation

There is no explicit negation in HATP. Negations are done through the different comparison
operators. For example:

2.5 Variable assignment / substitution

During the planning process, variables of preconditions and effects are substituted by the
values of the current task parameters. These values are inherited from the parent task.
However, HATP has a mechanism to assign free variables. This mechanism takes place in
the decomposition just before the description of the sub-tasks list.

2.5.1 Free variable

J. Guitton 9 CNRS-LAAS

R.type == "CAR"; // and
R.fuel == 100;

OR {
R.type == "CAR";
R.fuel == 100;

}{
R.type == "TRUCK";
R.fuel == 150;

}

R.type != "CAR"; // R is not a car
R.isReady == false; // R is not ready
R2 !>> R.friends; // R2 is not a friend of R

method Navigate(Agent R, Location To) {
empty {R.at == To;};
{

preconditions {};
subtasks {

// here need to assign the free variable From
1: NavFromTo(R, From, To);

};
}

}

HATP User Documentation September 2012

The assignment of free variable can be done only in a decomposition using the function
SELECT that takes as parameters a type and a set of preconditions. For example:

2.5.2 First satisfier precondition

This possibility to use free variables induces a branching in the planning tree. Sometimes,
when several values are possible and when the choice has no incidence on the quality of the
plan, or to reduce the planning time, we would like that the planner uses the first value it has
found.

In other words, a first satisfier precondition causes the planner to consider only the first
binding. Alternative bindings will not be considered event if the first binding leads to an invalid
plan. The function is named SELECTONCE.

2.5.3 Sorted precondition

A sorted precondition causes to consider bindings for this precondition in a specific order. The
associated function is named SELECTORDERED and takes two additional parameters a
comparison function and an comparison order.

The comparison function is a cost function (see section 2.8) and should be defined in the
same way.

2.6 Quantification

The HATP formalism allows to express universal quantifier and existential quantifier. These
quantifiers can be used either in preconditions or effects.

2.6.1 Universal quantifier

The universal quantifier means “for all” and is expressed in HATP with the keyword FORALL.
Used in preconditions, the universal quantifier meaning is “for each possible substitution of
the variable of the specified type of entity, if it respects the first set of precondition then it must

J. Guitton 10 CNRS-LAAS

// Select an agent of type robot and assign it to the variable R
R = SELECT(Agent, {R.type == “ROBOT”;});
// Select the location where this agent is currently
From = SELECT(Location, {R.at == From;});

// Select the FIRST agent FOUND of type robot and assign it to the variable R
R = SELECTONCE(Agent, {R.type == “ROBOT”;}); // do not backtrack on this choice

// Select the agent which is the the closer from the location From
R = SELECTORDERED(Agent, {R.type == "ROBOT";}, distanceMin(R.at, From), <);

HATP User Documentation September 2012

respect the second set of preconditions:

In this example, for all agents R positioned at the location From, R must be ready.

The universal quantifier is used in effects to manipulate a set of entities that satisfies a given
set of preconditions and apply to these entities some specified effects.

2.6.2 Existential quantifier

The existential quantifier is expressed with the keyword EXIST in HATP. This quantifier can
only be used in preconditions and is expressed with two set of preconditions. The first set
allows to pre-select a set of entities and the second to test if the preconditions are true for at
least one of these entities.

2.7 Call term and conditional effect

The last two functionalities of the HATP domain formalism are the call term and the
conditional effect.

2.7.1 Call term

The keyword CALL is used to apply mathematical operations (+, -, *, /) over a variable. The
first variable of the function receives implicitly the resulting value. A call term can be used
only in the effects.

2.7.2 Conditional effect

HATP allows to express some conditional effects. The associated keyword is IF and the

J. Guitton 11 CNRS-LAAS

// set isReady to true for all the agent that are at From
FORALL(Agent R, {R.at == From;}, {R.isReady = true;});

// All the agent that are at From must be ready
FORALL(Agent R, {R.at == From;}, {R.isReady == true;});

// At least one agent that is at From must be ready
EXIST(Agent R, {R.at == From;}, {R.isReady == true;});

// remove 10 units of fuel to R
CALL(R.fuel - 10); // meaning: R.fuel = R.fuel – 10;

Division by zero is not tested. User responsability.

HATP User Documentation September 2012

formalism is IF{set of preconditions;}{set of effects}.

2.8 Cost, duration and social rules

In this paragraph, we explain how to write cost and duration functions, and how to write and
use social rules.

2.8.1 Cost and duration functions

Cost and duration functions aim at defining a cost and a duration to each primitive task, i.e., to
each action. They are linked to the action through the cost and duration fields of the action
description:

Cost and duration functions are C++ function written in the cost file. A cost function must
return a double and a duration function must return a pair of double. The arguments of cost
and duration function can be values with standard type of HATP (number, string or bool) or
entities.

For entities, the C++ type is LightEntity. The bindings between planning values and C++
variables are automatically done during the planning process. In the C++ functions, the
entities and their attributes can be manipulated using the function get<type>(“name”) where
type is the type of the manipulated attribute and name the name of this attribute as defined in
the domain. (N.B. see the planning/LightEntity.hh file to see how to get more informations on the entity.)

J. Guitton 12 CNRS-LAAS

// if the fuel level is less than 5 units then R is not ready anymore
// and increment the number of failures of R
IF{R.isReady == true; R.fuel < 5;}{R.isReady = false; CALL(R.failures + 1);}

action Move(Agent R, Location From, Location To) {
preconditions { ...};
effects { ...};
cost{costFn(1)}; // link to the costFn cost function
duration{durationFn(1, 1)}; // link to the durationFn duration function

}

// example of a cost function
double costFn(number x){

return (double)x;
}
// example of a duration function
pair<double, double> durationFn(number x1, number x2){

return make_pair((double)x1, (double)x2);
}

HATP User Documentation September 2012

2.8.2 Social rules

Social rules aims at providing some extra global criteria when comparing some plans. These
rules are applied to a complete plan. Social rules have been defined to be used in the context
of human-robot interaction but some of them are generic and can be used in other domains.

These rules are: wasted time, effort balancing, control of intricacy and undesirable sequence.
Two additional rules have been defined: undesirable state and bad decomposition, but I have
deactivated them due to some bugs (never corrected) in the HATP code.

Wasted time

The wasted time social rule is used to avoid plans in which an agent must wait before
executing its action or has inactive periods. The time periods that can be used are: at the
beginning of the plan (double getFromStartDuration()), at the end of the plan (double
getToEndDuration()) or between two actions (vector<double> getDurations()). To use this
social rule, the definition is:

An example of associated cost function for the wasted time social rule is:

Effort balancing

The effort balancing social rule aims at controlling the engaged efforts of concerned agents in

J. Guitton 13 CNRS-LAAS

// a cost function computing the euclidean distance between 2 entities
double costDistance(LightEntity A1, LightEntity A2){

double XA1 = (double)A1.get<number>("xCoordinate");
double XA2 = (double)A2.get<number>("xCoordinate");
double YA1 = (double)A1.get<number>("yCoordinate");
double YA2 = (double)A2.get<number>("yCoordinate");
double R = ceil(sqrt(pow((XA2-XA1),2) + pow((YA2-YA1),2)));
return R;

}

wastedTime {
priority = 0; // priority of the social rule
agents = {ROB1, ROB2}; // list of concerned agents
penalty{computeWastedTime}; // associated cost function

}

// penality = wait time between actions + 10 * wait time at the end
float computeWastedTime(vector<WastedTimeData*> const& vec, double totalDuration) {

double inactive = 0.;
for(unsigned int it = 0 ; it < vec.size() ; it++) {

vector<double>vecDurations = vec[it]->getDurations(); // for one agent
for(unsigned int j = 0 ; j < vecDurations.size() ; j++) {

inactiveDuration += vecDurations[j];
}
inactiveDuration += vec[it]->getToEndDuration() * 10;

}
return inactiveDuration;

}

The use of social rules is not easy !
Definitions of social rules are not the same than in Montreuil thesis
Prototypes of associated functions must be the same than in these examples

HATP User Documentation September 2012

the produced plan.

An example of associated cost function for the effort balancing social rule is:

Control of intricacy

The Control of intricacy social rule can be defined to limit dependencies between the actions
of two or more agents by controlling the causal links between the streams of these agents.
The definition is

An example of associated cost function for the control of intricacy social rule is:

Undesirable sequence

The last social rule is the undesirable sequence social rule and is used to penalize some
possible decompositions. For example, in the Clean the Table domain, if we prefer that the
robot makes accessible an object instead of giving it directly, we can define the rule like this:

J. Guitton 14 CNRS-LAAS

effortBalancing {
priority = 0; // priority of the social rule
agents = {Achile, Jido}; // list of concerned agents
penalty{computeEffortBalancing}; // associated cost function

}

controlOfIntricacy {
priority = 0; // priority of the social rule
agents = {ROB1, ROB2, ROB3}; // list of concerned agents
penalty{computeControlOfIntricacy}; // associated cost function

}

// if human works more than robot then cost is 100
float computeEffortBalancing(map<LightEntity const*, float> efforts) {

float penH = 0, penR = 0;
for(map<LightEntity const*, float>::const_iterator it=efforts.begin() ; it!=efforts.end() ; it++) {

if ((it->first)->get<string>("type") == "human") penH += it->second;
else penR += it->second;

}
if(penH > penR) return 100;
return 0.;

}

// add a penalty of 10 to each causal link
float computeControlOfIntricacy(unsigned int nb) {

return (float)(nb * 10.);
}

undesirableSequence putAndTake {
priority = 0;
// definition of variables
Agent A1, A2;
GameArtifact C;
Table T;
// some preconditions
conditions {A1 != A2;}
// undesirable sequence
sequence {

1:PutObject(A1, C, T);
2:TakeObject(A2, C, P2)>1;

}
penalty{undesirableSeqPenalty};

}

HATP User Documentation September 2012

This rule has a name, here putAndTake. So we can define, for a same domain, more than one
undesirable sequence. An example of associated cost function for the undesirable sequence
social rule can be:

2.8.3 Setting up costs

As we have seen in the previous paragraph, social rules have a field called priority. This
priority aims at giving a weight to each social rule as well as to the duration cost compared to
the action costs (priority equal to 0 by default). The computation method used is called AHP
for Analytic Hierarchy Process3.

A cost criterion with a priority greater than 0 will be considered as more important than others
by HATP. In the opposite, a priority lesser than 0 will be less important. If all the criteria have a
priority of 0 than they are equal. For example, with only action costs and duration:

Priorities are defined relatively to each other in the interval [-8, 8].

2.9 Planning domain and problem

HATP takes in entry two files: a domain file containing the description of the manipulated
objects and the possible tasks, and a cost file containing all the cost functions (action costs,
durations and social rules costs).

2.9.1 Organization of the planning domain file

The planning domain file is composed of three parts: the fact database, the HTN part and the
social rules part.

3 See for example: http://en.wikipedia.org/wiki/Analytic_hierarchy_process

J. Guitton 15 CNRS-LAAS

// penalize each undesirable sequence by 50 * # of time it appears
float undesirableSeqPenalty(vector<SocialRuleData*> const& vec, LightWorldBase const& wb){

float penalty = 0.;
for(unsigned int i = 0 ; i < vec.size() ; i++) penalty += 50.*(vec[i]->getNumber());
return penalty;

}

To resume, prototypes of cost functions for social rules are:
Wasted time: float name(vector<WastedTimeData*> const&, double)
Effort balancing: float name(map<LightEntity const*, float>)
Control of intricacy: float name(unsigned int)
Undesirable sequence: float name(vector<SocialRuleData*> const&, LightWorldBase const&)

// setting up duration priority compared to action costs
timePart { priority = 0; } // duration and action costs have the same weight = .5
timePart { priority = 2; } // duration weight is twice action costs weight
timePart { priority = -2; } // action costs weight is twice duration weight

HATP User Documentation September 2012

Fact database

The fact database is defined four steps: definition of entity types, definition of attributes,
creation of entities and initialization of attributes. This last step is optional and can be done at
the beginning of the planning process by an external module as, for example, the supervisor.

HTN part

The HTN part contains the list of possible tasks: methods and actions.

Rules part

The end of the file is dedicated to the definition of social rules. The part is optional: A domain
can be defined without any social rules. But it must contain the declaration of the priority of
the duration criterion.

2.9.2 Defining a problem

Because HATP was transformed to be executed onboard a robot, there is no file dedicated to

J. Guitton 16 CNRS-LAAS

// The domain file:
factdatabase {

...
}
HTN {

...
}
... // rules part

Factdatabase {
// step 1: definition of entity types (Agent already defined)
define entityType Location;
// step 2: definition of attributes
define entityAttributes Agent {

static atom string type;
dynamic atom Location at;
dynamic atom Container loaded;

}
define entityAttributes Location {

static set Location adjacent;
dynamic atom bool occupied;
dynamic atom Agent isForbiddenBy;

}
// step 3: creation of entities
ROB1 = new Agent;
LOC1 = new Location
// step 4: (opt.) init of attributes
ROB1.type = “ROBOT”;
ROB1.at = LOC1;
...

}

// last part: social rules
timePart { priority = 0; }

wastedTime {
priority = -1;
agents = {ROB1, ROB2};
penalty{computeWastedTime};

}

HATP User Documentation September 2012

describe a problem. A goal is sent to HATP by a external module under the form of a task to
decompose. Complex goal can be designed as a method in the HTN part.

2.10 HATP Extension: Belief Management

After the CHRIS project, we went to the following conclusion: When acting in an environment
with other partners, an agent has to reason not only on its own capabilities but also on the
capabilities of other agents in order to achieve a task in a collaborative way.

The description of the world as it can be modeled with HATP assumes that the current state is
entirely known and that the agents share the same view of the world. In HRI problems, these
assertions can lead to unfeasible or illogical solutions for the human.

In order to bridge this gap, we have proposed4 to extend the classical representation of HATP
by adding, on the one hand, the possibility to model a different knowledge for each agent and,
on the other hand, the possibility to consider that an agent may or may not know some
information.

2.10.1 The agents: myself and the others

In order to specify which agent is the robot or, more generally, the agent for which the system
plans, we use the keyword myself instead of declaring a new agent. For example, if JIDO is
the robot and HERAKLES is a human, the initialization will look like:

2.10.2 Beliefs representation

To model different beliefs for the agents, the HATP formalism is extended using Multiple
Values State Variables (MVSV). A multiple values state variable V is instantiated from a
domain Dom and for each agent a є A the variable V has an instance V(A) = v є Dom. For
example:

By default, in order to simplify and clarify the planning domain, only attributes for which the
agents have a different belief, and only for agents different from the planning robot, are
modeled with the MVSV formalism.

4 Guitton, Warnier and Alami - “Belief Management for HRI Planning” in proc. BNC@ECAI, 2012

J. Guitton 17 CNRS-LAAS

// The agents have a different belief about the location of the tape:
WHITE_TAPE(JIDO).isIn = PINK_TRASHBIN;
WHITE_TAPE(HERAKLES).isIn = BLUE_TRASHBIN;

// step 3:creation of entities
JIDO = myself;
HERAKLES = new Agent;

HATP User Documentation September 2012

2.10.3 Known and unknown information

The agents' beliefs model includes the notion of known and unknown information. When an
agent has no information about an entity attribute, the value associated to this property is set
to unknown. When an agent, different from the the agent myself, knows an information
(unknown for myself), this value is set to known.

An other example using known:

When an agent has no information about an entity, i.e., all the attributes of this entity should
be set to unknown, we simplify the representation by:

With this representation, we assume that even if the agent has no information concerning the
object, it is informed about the existence of this object.

2.10.4 Communication actions

A communication action is a specific action that takes as parameters two agents, the emitter
and the receiver, and a subject which is represented by an entity and an attribute. The
prototype for a communication action is:

J. Guitton 18 CNRS-LAAS

// The agents have a different belief about the location of the tape:
BLACK_TAPE.isIn = PINK_TRASHBIN; // for all agents
WHITE_TAPE.isIn = PINK_TRASHBIN; // for Jido
WHITE_TAPE(HERAKLES).isIn = BLUE_TRASHBIN;

// Herakles doesn't known where is the tape
WHITE_TAPE.isIn = PINK_TRASHBIN; // for Jido
WHITE_TAPE(HERAKLES).isIn = unknown;

// Jido doen't know where is the tape, but Herakles knows
WHITE_TAPE.isIn = unknown; // for Jido
WHITE_TAPE(HERAKLES).isIn = known;

// Herakles has no information on the tape
WHITE_TAPE(HERAKLES) = unknown;

HATP User Documentation September 2012

The aim of a communication action is to transmit a value from an agent knowledge to another
agent knowledge and corresponds to the effect:

This effect is implicit to this kind of action, i.e., the domain designer does not need to specify
it. But some extra effects can be added.

In order to fit the domain formalism, if the parameter corresponding to the attribute is set to
NULL, then all the attributes of the concerned entity are transmitted from the agent A to the
agent B. Otherwise, only the value of the specified attribute is communicated.

HATP with Belief Management distinguishes three types of communication: information,
contradiction and question. The action of type information aims at giving an information when
the attribute in unknown in the beliefs of the receiver. The planner produces an action of type
contradiction when the attribute, for an agent is different from the attribute for myself. The
question is used when a value is unknown for myself and known for another agent.

2.10.5 General communication method

In order to let planning domain designer name the communication action as he would do for
classical actions, the communication actions are linked to the concepts of information,
contradiction and question through a special method called beliefManagement:

with, for example, the communication action of type information:

Each communication action must have been defined previously in the planning domain before
the definition of the general communication method.

J. Guitton 19 CNRS-LAAS

CommAction name (Agent A, Agent B, Entity E, Attribute T) {
preconditions {...};
effects {...};
cost {...};
duration {...}

}

E(B).T = E(A).T

beliefManagement {
information { GiveInformationAbout; }
contradiction { ForceInformation; }
question { AskForInformation; }

}

commAction GiveInformationAbout(Agent A, Agent B, Entity E, Attribute T) {
preconditions {};
effects {

FORALL(Agent C, {C != A;}, {E(C).T = E(A).T;}); // co-presence
};
cost{cost1()};
duration{duration1()};

}

HATP User Documentation September 2012

3 Installing HATP

In order to be able to produce a plan, it is necessary to install the main planner module and
the communication module. A graphical viewer is available to visualize plans. A C++ library is
also available and aims at manipulating the output of HATP.

All these modules are available under GIT on the LAAS / RIA / RIS GIT server (trac) at
trac.laas.fr/git/robots/

3.1 HATPOnboard

HATPOnboard contains the core of the planning system. It is available through GIT at the
address trac.laas.fr/git/robots/HATPOnboard and relies on some dependencies (boost,
antlr, MsgConnector)

3.2 MsgConnector

MsgConnector is a package allowing the communication between HATPOnboard and other
modules. It is composed of a server and a client API (C++) as well as some predefined
bridges. It is available at trac.laas.fr/git/robots/MsgConnector. During the installation, it is
possible to select which bridges should be compiled and installed (with ccmake)

Available bridges are:

• MSGCONNECTOR-PRINT-BRIDGE: a simple text viewer
• MSGCONNECTOR-OPRS-BRIDGE: to communicate with SHARY (mp-oprs, boost, libHATP)
• MSGCONNECTOR-ORO-BRIDGE: to communicate with the ORO server (liboro, boost)
• MSGCONNECTOR-YARP-BRIDGE: to communicate with a YARP module (YARP libs)

By default, MsgConnector is compiled without any bridge. To select bridges to compile, set
bridge options to ON with:

J. Guitton 20 CNRS-LAAS

// installing HATPOnboard
> git clone ssh://trac.laas.fr/git/robots/HATPOnboard
> cd HATPOnboard
> mkdir build ; cd build
> cmake .. ; make

// installing MsgConnector
> git clone ssh://trac.laas.fr/git/robots/MsgConnector
> cd MsgConnector
> mkdir build ; cd build
> cmake .. ; make ; make install

> ccmake ..

Needed Antlr 2 (not 3) – latest version is 2.7.7 – http://www.antlr2.org/download.html

http://www.antlr2.org/download.html

HATP User Documentation September 2012

MsgConnector contains also a small module called HATPGoalTester allowing to send a goal to
HATPOnboard like a supervisor would do it. It can be found in the tools folder.

3.3 HATPConsole

HATPConsole is a graphical viewer for the plans produced by HATPOnboard. This module
relies on MsgConnector, boost, Qt and GraphViz (libGVC). It is available at the address
trac.laas.fr/git/robots/HATPConsole.

The console looks like (in standalone mode / without ontology requests):

It is possible to visualize the plan under a text form, under a set of streams or to visualize the
corresponding planning tree:

J. Guitton 21 CNRS-LAAS

// installing HATPConsole
> git clone ssh://trac.laas.fr/git/robots/HATPConsole
> cd HATPConsole
> mkdir build ; cd build
> cmake .. ; make

Default network port number used by MsgConnector is 5500

HATP User Documentation September 2012

3.4 LibHATP

LibHATP is a C++ library allowing to manipulate easily plans produced by HATPOnboard. It is
available at trac.laas.fr/git/robots/LibHATP and depends only on boost regex.

LibHATP contains a doxygen documentation available after typing:

J. Guitton 22 CNRS-LAAS

// installing LibHATP
> git clone ssh://trac.laas.fr/git/robots/LibHATP
> cd LibHATP
> mkdir build ; cd build
> cmake .. ; make ; make install

> make doc

HATP User Documentation September 2012

4 Running HATP

In this section, we give a brief overview of how works HATP and how to launch the planning
system.

4.1 How works HATP ?

The entire planning system is composed of a main part: the planning process, and a set of
other modules allowing to communicate, visualize plans and manipulate them.

4.1.1 Overview of the planning system

The supervisor sends to HATPOnboard a planning request. HATPOnboard gets the initial
state by sending ontology requests to ORO then computes possible plans. It sends back to
the supervisor the best plan found.

4.1.2 Planning process

J. Guitton 23 CNRS-LAAS

HATP User Documentation September 2012

The HTN planning process is located in the source file hatpPlanningSession.cc in the
planning/ folder. This process is composed of a main loop that refines the planning tree by
decomposing tasks into sub-tasks (classical HTN process). Then, when a plan is found, the
system transforms it into streams, computes the global cost (plan.cc) and stocks it
(planStockManager.cc).

4.1.3 Important files of HATPOnboard

Most of changes that can be made to HATPOnboard as, for example, changing the network
interface, adding a new functionality, will take place in one of the following files:

C++ files

onboard/mainOnboardHATP.cc Main file of HATPOnboard

onboard/requestLexer.hh Message request parser

parsing/HATP.g Domain parser (antlr language)

planning/hatpPlanningSession.cc Main loop of the planning process

plan/plan.cc Internal structure of a plan

plan/TimeProjection.cc Parallelization process

4.2 Launching the system

The first module that needs to be launch is MsgConnector. This module and the others can be
executed through a script present in the current folder.

Then, HATPOnboard, HATPConsole and bridges can be launched. For HATPOnboard, the
domain must be parsed in order to create corresponding C++ code, then recompiled:

After parsing the domain, HATPOnboard can be launched.

For standalone version (without connection to ORO or other knowledge-based server):

J. Guitton 24 CNRS-LAAS

in MsgConnector:
> build/server/MsgServer
#or
> ./run

in HATPOnboard:
> build/parser/HATPparser DOMAIN_FILE COST_FILE
> cd build ; make clean ; make
#or
> ./parse (after having configured it)

in HATPOnboard:
> build/onboard/HATPonboard MP_SERVER ORO_NAME
#or
> ./run

HATP User Documentation September 2012

4.3 Communication with HATP

The communication can be seen at two levels: A higher level or semantic level describing in
which formalism to exchange data and a lower level or network level that manages the
transfers of information.

For the lower level, MsgConnector offers an API allowing to easily send and receive
messages from an external module.

To communicate and exchange data, the HATP planning system uses messages based on
the JSON5 syntax.

4.3.1 Communication API

The requests are received and sent by HATP through the MsgConnector server.
MsgConnector proposes a C++ library to write your own network client. The prototypes of
available methods are given:

Here is an example of such a client:

5 JavaScript Object Notation - http://www.json.org

J. Guitton 25 CNRS-LAAS

in HATPOnboard:
> build/onboard/HATPonboard MP_SERVER
#or
> ./sa_run

// a simple module that sends goals and receive plan
string myFirstPlanRequest("...");
msgClient* mp = new msgClient();
mp->connect("GOALTESTER", "localhost", 5500);
if(mp->isConnected()) {

mp->sendMessage("HATP", myFirstPlanRequest);
pair<string, string> result = mp->getBlockingMessage();
cout << "plan: " << result.second;

}

// msgClient.hh
// constructor and destructor
msgClient();
~msgClient();
// connect and disconnect
bool connect(std::string name, std::string server, unsigned int port);
void disconnect();
// test if connected
bool isConnected();
// test if a message has been received
bool isMessageWaiting();
// send a message
bool sendMessage(std::string dest, std::string content);
// get a message (non-blocking and blocking method)
std::pair<std::string, std::string> getMessage(); // <from, message>
std::pair<std::string, std::string> getBlockingMessage(); // <from, message>

HATP User Documentation September 2012

4.3.2 Basic communication syntax

All the incoming requests must begin with:

The planner main module is able to handle some requests:

Request types

plan Ask HATP to compute plans and send back the best one

replan Ask HATP to replan in case of failure (not implemented)

getTasks Ask HATP the list of high-level tasks

getActions Ask HATP the list of primitive actions

setMaxTime Set the planning time limit (in seconds)

A HATP answer begins with the following syntax:

4.3.3 Requests syntax

A planning request contains some other fields identifying the task to plan. The complete
planning request syntax is:

For example:

To get the list of tasks or actions, only the REQ-TYPE field is important:

J. Guitton 26 CNRS-LAAS

{"HATP-REQ": {
"REQ-TYPE":

{"HATP-REP": {

{"HATP-REQ": {
"REQ-TYPE": "plan",
"REQ-ID": NUMBER, // an id referring to this planning request
"TASK-NAME": STRING, // the goal-task name
"PARAMETERS": ARRAY[STRING] // list of parameters for this goal

}}

{"HATP-REQ": {
"REQ-TYPE": "plan",
"REQ-ID": 1,
"TASK-NAME": "Transport",
"PARAMETERS": ["CONTAINER7", "PILE4_1"]

}}

{"HATP-REQ": {
"REQ-TYPE": "getTasks" // or getActions

}}

HATP User Documentation September 2012

To set the planning time limit. The value is the number of seconds:

4.3.4 Answer of HATP

After having computed all the possible plans or reached the planning time limit, HATP sends
back the best plan found using the syntax:

This result message contains all the necessary information to exploit the plan produced by
HATP. For example, HATPConsole, when receiving this kind of message, is able to construct
the following graphs:

J. Guitton 27 CNRS-LAAS

{"HATP-REP": {
"REQ-ID": NUMBER, // corresponds to the id of the planning request
"REPORT": STRING, // result of the planning phase
"NODES": ARRAY[// list of nodes of the resulting plan

{"NODE": {
"NODE-ID": NUMBER, // id of the action
"NODE-TYPE": STRING, // type of the node: metatask or action
"ACTION-NAME": STRING, // name of the task
"AGENTS": ARRAY[STRING], // list of agent involved in the action
"START-TIME": NUMBER, // start time (second) of the action
"END-TIME": NUMBER, // end time (second) of the action
"PARAMETERS": ARRAY[STRING] // ordered unified parameters of the action

}}
],
"STREAMS": { // sub-structure describing the set of streams

"ROOTS": ARRAY[NUMBER], // root node of each stream
"LINKS": ARRAY[// list of causal links between nodes

{"LINK": {
"TYPE": STRING, // should be: causal
"FROM": NUMBER, // id of the predecessor action
"TO": NUMBER // id of the successor action

}}
]

},
"TREE": { // sub-structure describing the planning tree

"ROOTS": ARRAY[NUMBER], // root node(s) of the planning tree
"LINKS": ARRAY[// list of links between nodes

{"LINK": {
"TYPE": STRING, // can be causal or hierarchical
"FROM": NUMBER, // id of the predecessor action
"TO": NUMBER // id of the successor action

}}
]

}
}}

streams extracted from the answer message

{"HATP-REQ": {
"REQ-TYPE": "setMaxTime",
"MAXTIME": NUMBER

}}

HATP User Documentation September 2012

For answers to other requests (getTasks and getActions) the syntax is:

4.4 Manipulation of plans

It is not mandatory to manipulate directly the previous syntax to extract data from a plan result
message sent by HATPOnboard. You can use the plan manipulation C++ library called
LibHATP.

4.4.1 LibHATP

In order to manipulate automatically the plan received by HATP, the message needs to be
parsed. LibHATP contains such a parser and transforms the plan result message into
structures that can be manipulated directly in C++.

LibHATP available C++ classes are :

C++ classes

hatpPlan Main class representing a plan

hatpStreams Representation of the streams extracted from the plan message

hatpTree Representation of the tree extracted from the plan message

hatpNode Class representing a planning node

hatpTaskList Sequence of nodes

J. Guitton 28 CNRS-LAAS

Tree extracted from the answer message

{"HATP-REP": {
"RESULT": ARRAY[{

"TASK-NAME": STRING,
"PARAMETERS": ARRAY[STRING]

}]
}}

HATP User Documentation September 2012

To manipulate a plan received from HATPOnboard, you just need to create a hatpPlan with
the content of the message in argument. The parsing will be done automatically:

Each class contains all the necessary accessors to manipulated the plan data. For example,
for the hatpNode class, the public methods are: getID(), getType(), getName(),
getAgents(), getStartTime(), getEndTime(), getParameters(), getRootNode(),
getSubNodes(), getTreePredecessors(), getTreeSuccessors(), getStreamPredecessors,

getStreamSuccessors(), isAction(), toString(), ...

For more details, please refer to the doxygen documentation of this API.

4.4.2 A simple application

For example, we can extend our previous client which sends a goal to HATP and receives the
resulting plan, like this:

J. Guitton 29 CNRS-LAAS

hatpPlan* myPlan = new hatpPlan(removeFormatting(result.second));

// a simple module that counts actions per agent and give the duration
// for the DWR domain

#include "msgClient.hh"
#include "hatpPlan.hh"

string myFirstPlanRequest("{\"HATP-REQ\":{\"REQ-TYPE\": \"plan\", \"REQ-ID\": 1,
\"TASK-NAME\": \"Transport\", \"PARAMETERS\": [\"CONTAINER7\", \"PILE4_1\"]}}");

msgClient* mp = new msgClient();
mp->connect("GOALTESTER", "localhost", 5500);
if(mp->isConnected()) {

mp->sendMessage("HATP", myFirstPlanRequest);
pair<string, string> result = mp->getBlockingMessage();
// we get the plan
string toAnalyse(result.second);
removeFormatting(toAnalyse);
hatpPlan* myPlan = new hatpPlan(result.second);
if(myPlan->isPlanValid()) {

cout << "We have received a plan! (id = "<< myPlan->getID() << ")" << endl
vector<string> agents = myPlan->getAgentsList();
for(unsigned int i = 0 ; i < agents.size() ; i++) {

unsigned int endTime = 0;
vector<HATPNode*> nodes = myPlan->getStreams()->getNodesForAgent(agents[i]);
cout << agents[i] << " has participated to " << nodes.size() << " actions." << endl;
for(unsigned int j = 0 ; j < nodes.size() ; j++) {

if(endTime < nodes[j]->getEndTime()) endTime = nodes[j]->getEndTime();
}
cout << "He has finished its work after " << endTime << " seconds." << endl;

}
}

}
mp->disconnect();

Is is mandatory to call the function removeFormatting(string) before creating a plan structure!

HATP User Documentation September 2012

Output of this small example should look like:

- That's all folks! -

J. Guitton 30 CNRS-LAAS

We have received a plan! (id = 1)
CRANE7 has participated to 4 actions.
He has finished its work after 4 seconds.
ROB1 has participated to 4 actions.
He has finished its work after 6 seconds.
CRANE4 has participated to 2 actions.
He has finished its work after 7 seconds.

HATP User Documentation September 2012

A The “Clean The Table” domain

factdatabase {

// entity types
define entityType Table;
define entityType Trashbin;
define entityType GameArtifact;

// entity attributes
define entityAttributes Agent {

static atom string type;
dynamic atom GameArtifact hasInRightHand;

}
define entityAttributes Table {

static atom string hasColor;
}
define entityAttributes Trashbin {

static atom string hasColor;
dynamic set Agent isReachable;

}
define entityAttributes GameArtifact {

static atom string hasColor;
dynamic set Agent isVisible;
dynamic set Agent isReachable;
dynamic atom Table isOn;
dynamic atom Trashbin isIn;

}

// entity declaration
ACHILE_HUMAN1 = new Agent;
JIDOKUKA_ROBOT = new Agent;
HRP2TABLE = new Table;
BLUE_TRASHBIN = new Trashbin;
PINK_TRASHBIN = new Trashbin;
BLACK_TAPE = new GameArtifact;
GREY_TAPE = new GameArtifact;
BLUE_CUBE = new GameArtifact;
//BLUE_CUBE_2 = new GameArtifact;
RED_CUBE = new GameArtifact;
//RED_CUBE_2 = new GameArtifact;

// static initialisation
ACHILE_HUMAN1.type = "Human";
JIDOKUKA_ROBOT.type = "Robot";
BLUE_TRASHBIN.hasColor = "blue";
PINK_TRASHBIN.hasColor = "pink";
BLACK_TAPE.hasColor = "black";
GREY_TAPE.hasColor = "grey";
BLUE_CUBE.hasColor = "blue";
//BLUE_CUBE_2.hasColor = "blue";
RED_CUBE.hasColor = "red";
//RED_CUBE_2.hasColor = "red";

}

// --

HTN {

action TakeObject(Agent A, GameArtifact C, Table T) {
preconditions {

C.isOn == T;
A >> C.isVisible;
A >> C.isReachable;
A.hasInRightHand == NULL;

};
effects {

FORALL(Agent Ag, {Ag >> C.isVisible;}, {C.isVisible =>> Ag;});
A.hasInRightHand = C;
C.isOn = NULL;

};
cost{cost1()};
duration{duration1()};

}

J. Guitton 31 CNRS-LAAS

HATP User Documentation September 2012

action PutObject(Agent A, GameArtifact C, Table T) {
preconditions {

A.hasInRightHand == C;
};
effects {

A.hasInRightHand = NULL;
C.isOn = T;
FORALL(Agent Ag1, {}, {C.isVisible <<= Ag1;});
FORALL(Agent Ag2, {}, {C.isReachable <<= Ag2;});

};
cost{cost1()};
duration{duration1()};

}

action PutObjectUnvisible(Agent A, GameArtifact C, Table T) {
preconditions {

A.hasInRightHand == C;
};
effects {

A.hasInRightHand = NULL;
C.isOn = T;
C.isVisible <<= A;
C.isReachable <<= A;
FORALL(Agent Ag1, {Ag1 != A;}, {C.isVisible =>> Ag1;});
FORALL(Agent Ag2, {Ag2 != A;}, {C.isReachable =>> Ag2;});

};
cost{cost1()};
duration{duration1()};

}

action PutObjectVisible(Agent A, GameArtifact C, Table T) {
preconditions {

A.hasInRightHand == C;
};
effects {

A.hasInRightHand = NULL;
C.isOn = T;
C.isReachable <<= A;
FORALL(Agent Ag, {}, {C.isVisible <<= Ag;});

};
cost{cost1()};
duration{duration1()};

}

action PutObjectVisibleAndReachable(Agent A, GameArtifact C, Table T) {
preconditions {

A.hasInRightHand == C;
};
effects {

A.hasInRightHand = NULL;
C.isOn = T;
C.isVisible <<= A;
FORALL(Agent Ag1, {}, {C.isVisible <<= Ag1;});
FORALL(Agent Ag2, {}, {C.isReachable <<= Ag2;});

};
cost{cost1()};
duration{duration1()};

}

action ThrowObject(Agent A, GameArtifact C, Trashbin T) {
preconditions {

A.hasInRightHand == C;
A >> T.isReachable;

};
effects {

A.hasInRightHand = NULL;
C.isIn = T;

};
cost{cost1()};
duration{duration1()};

}

J. Guitton 32 CNRS-LAAS

HATP User Documentation September 2012

action GiveObject(Agent A1, GameArtifact C, Agent A2) {
preconditions {

A1.hasInRightHand == C;
A2.hasInRightHand == NULL;

};
effects {

A1.hasInRightHand = NULL;
A2.hasInRightHand = C;

};
cost{cost10()};
duration{duration1()};

}

// --

method Get(Agent A, GameArtifact C) {
empty{A.hasInRightHand == C;};
{

preconditions{
A.hasInRightHand == NULL;
A >> C.isReachable;

};
subtasks {

T = SELECT(Table, {C.isOn == T;});
1:TakeObject(A, C, T);

};
}
{

preconditions{
A.hasInRightHand != NULL;
A >> C.isReachable;

};
subtasks {

C2 = SELECT(GameArtifact, {A.hasInRightHand == C2;});
T = SELECT(Table, {C.isOn == T;});
1:Place(A, C2, T);
2:TakeObject(A, C, T)>1;

};
}
{

preconditions{
A.hasInRightHand == NULL;
A !>> C.isReachable;

};
subtasks {

B = SELECT(Agent, {B >> C.isReachable;});
1:Get(B, C);
2:Give(B, C, A)>1;

};
}
{

preconditions{
A.hasInRightHand != NULL;
A !>> C.isReachable;

};
subtasks {

C2 = SELECT(GameArtifact, {A.hasInRightHand == C2;});
B = SELECT(Agent, {B >> C.isReachable;});
T = SELECT(Table, {});
1:Place(A, C2, T);
2:Get(B, C);
3:Give(B, C, A)>1,>2;

};
}

}

method Place(Agent A, GameArtifact C, Table T) {
empty{C.isOn == T;};
{

preconditions {};
subtasks {

1:Get(A, C);
2:PutObject(A, C, T)>1;

};
}

}

J. Guitton 33 CNRS-LAAS

HATP User Documentation September 2012

method Give(Agent A, GameArtifact C, Agent B) {
empty{B.hasInRightHand == C;};
{

preconditions {B.hasInRightHand == NULL;};
subtasks {

1:Get(A, C);
2:GiveObject(A, C, B)>1;

};
}
{

preconditions {B.hasInRightHand == NULL;};
subtasks {

T = SELECT(Table, {});
1:Get(A, C);
2:PutObjectVisibleAndReachable(A, C, T)>1;
3:Get(B, C)>2;

};
}

}

method Hide(Agent A, GameArtifact C, Agent B) {
empty{A.hasInRightHand != C; B >> C.isVisible;};
{

preconditions {};
subtasks {

T = SELECT(Table, {});
1:Get(A, C);
2:PutObjectUnvisible(A, C, T)>1;

};
}

}

}

// --

timePart { priority = 0; }

J. Guitton 34 CNRS-LAAS

HATP User Documentation September 2012

B The “Dock Worker Robot” domain

This domain has been translated from SHOP2 formalism.

factdatabase {

// entity types
define entityType Location;
define entityType Path;
define entityType Pile;
define entityType Crane;
define entityType Container;

// entity attributes
define entityAttributes Agent {

static atom string type; // ROBOT or CRANE
dynamic atom Location at; // also used for belong
dynamic atom Container loaded; // also used for holding, unloaded, empty
dynamic set Location path; // for list path

}
define entityAttributes Location {

static set Location adjacent;
static atom number xcoord;
static atom number ycoord;
dynamic atom bool occupied;
dynamic atom Agent isForbiddenBy; // for list forbid

}
define entityAttributes Pile {

static atom Location attached;
dynamic set Container contains;

}
define entityAttributes Container {

dynamic atom Pile in;
dynamic atom Pile top;
dynamic atom Container on;

}

// --
// INITIAL STATE

// entity declaration
ROB1 = new Agent; ROB2 = new Agent; ROB3 = new Agent;
CRANE1 = new Agent; CRANE2 = new Agent; CRANE3 = new Agent; CRANE4 = new Agent; CRANE5 = new Agent;
CRANE6 = new Agent; CRANE7 = new Agent; CRANE8 = new Agent; CRANE9 = new Agent; CRANE10 = new Agent;
LOC1 = new Location; LOC2 = new Location; LOC3 = new Location; LOC4 = new Location; LOC5 = new Location;
LOC6 = new Location; LOC7 = new Location; LOC8 = new Location; LOC9 = new Location; LOC10 = new Location;
PILE1_1 = new Pile; PILE1_2 = new Pile; PILE2_1 = new Pile; PILE2_2 = new Pile;
PILE3_1 = new Pile; PILE3_2 = new Pile; PILE4_1 = new Pile; PILE4_2 = new Pile;
PILE5_1 = new Pile; PILE5_2 = new Pile; PILE6_1 = new Pile; PILE6_2 = new Pile;
PILE7_1 = new Pile; PILE7_2 = new Pile; PILE8_1 = new Pile; PILE8_2 = new Pile;
PILE9_1 = new Pile; PILE9_2 = new Pile; PILE10_1 = new Pile; PILE10_2 = new Pile;
CONTAINER1 = new Container; CONTAINER2 = new Container; CONTAINER3 = new Container; CONTAINER4 = new Container;
CONTAINER5 = new Container; CONTAINER6 = new Container; CONTAINER7 = new Container; CONTAINER8 = new Container;
CONTAINER9 = new Container; CONTAINER10 = new Container;

// static initialisation
ROB1.type = "ROBOT"; ROB2.type = "ROBOT"; ROB3.type = "ROBOT";
CRANE1.type = "CRANE"; CRANE2.type = "CRANE"; CRANE3.type = "CRANE"; CRANE4.type = "CRANE";
CRANE5.type = "CRANE"; CRANE6.type = "CRANE"; CRANE7.type = "CRANE"; CRANE8.type = "CRANE";
CRANE9.type = "CRANE"; CRANE10.type = "CRANE";
PILE1_1.attached = LOC1; PILE1_2.attached = LOC1; PILE2_1.attached = LOC2; PILE2_2.attached = LOC2;
PILE3_1.attached = LOC3; PILE3_2.attached = LOC3; PILE4_1.attached = LOC4; PILE4_2.attached = LOC4;
PILE5_1.attached = LOC5; PILE5_2.attached = LOC5; PILE6_1.attached = LOC6; PILE6_2.attached = LOC6;
PILE7_1.attached = LOC7; PILE7_2.attached = LOC7; PILE8_1.attached = LOC8; PILE8_2.attached = LOC8;
PILE9_1.attached = LOC9; PILE8_2.attached = LOC8; PILE10_1.attached = LOC10; PILE10_2.attached = LOC10;
CRANE1.at = LOC1; CRANE2.at = LOC2; CRANE3.at = LOC3; CRANE4.at = LOC4; CRANE5.at = LOC5;
CRANE6.at = LOC6; CRANE7.at = LOC7; CRANE8.at = LOC8; CRANE9.at = LOC9; CRANE10.at = LOC10;
LOC1.adjacent <<= LOC5;
LOC2.adjacent <<= LOC5;
LOC3.adjacent <<= LOC7;
LOC4.adjacent <<= LOC7;
LOC5.adjacent <<= LOC1; LOC5.adjacent <<= LOC2; LOC5.adjacent <<= LOC6; LOC5.adjacent <<= LOC9;
LOC6.adjacent <<= LOC5; LOC6.adjacent <<= LOC7;
LOC7.adjacent <<= LOC3; LOC7.adjacent <<= LOC4; LOC7.adjacent <<= LOC6; LOC7.adjacent <<= LOC8;
LOC8.adjacent <<= LOC7;

J. Guitton 35 CNRS-LAAS

HATP User Documentation September 2012

LOC9.adjacent <<= LOC5; LOC9.adjacent <<= LOC10;
LOC10.adjacent <<= LOC9;

// default init
LOC1.occupied = false; LOC2.occupied = false; LOC3.occupied = false; LOC4.occupied = false;
LOC5.occupied = false; LOC6.occupied = false; LOC7.occupied = false; LOC8.occupied = false;
LOC9.occupied = false; LOC10.occupied = false;

// dynamic initialisation (initial state)
ROB1.at = LOC3; LOC3.occupied = true;
ROB2.at = LOC6; LOC6.occupied = true;
ROB3.at = LOC10; LOC10.occupied = true;
CONTAINER1.in = PILE1_1; PILE1_1.contains <<= CONTAINER1;
CONTAINER2.in = PILE1_1; CONTAINER2.on = CONTAINER1; PILE1_1.contains <<= CONTAINER1;
CONTAINER3.top = PILE1_1; CONTAINER3.in = PILE1_1; CONTAINER3.on = CONTAINER2; PILE1_1.contains <<= CONTAINER3;
CONTAINER4.in = PILE1_2; PILE1_2.contains <<= CONTAINER4;
CONTAINER5.in = PILE1_2; CONTAINER5.on = CONTAINER4; PILE1_2.contains <<= CONTAINER5;
CONTAINER6.top = PILE1_2; CONTAINER6.in = PILE1_2; CONTAINER6.on = CONTAINER5; PILE1_2.contains <<= CONTAINER6;
CONTAINER7.in = PILE7_1; PILE7_1.contains <<= CONTAINER7;
CONTAINER8.top = PILE7_1; CONTAINER8.in = PILE7_1; CONTAINER8.on = CONTAINER7; PILE7_1.contains <<= CONTAINER8;
CONTAINER9.in = PILE10_1; PILE10_1.contains <<= CONTAINER9;
CONTAINER10.top = PILE10_1; CONTAINER10.in = PILE10_1; CONTAINER10.on = CONTAINER9;
PILE10_1.contains <<= CONTAINER10;

}

// --

HTN {

// moves a robot between two adjacent locations
action Move(Agent R, Location From, Location To, Location FinalDest) {

preconditions {
R.type == "ROBOT";
To >> From.adjacent;
R.at == From;
To.occupied == false;

};
effects {

R.at = To;
From.occupied = false;
To.occupied = true;
R.path <<= To; // added
IF{From !>> R.path;}{R.path <<= From;} // added
IF{To.isForbiddenBy == R;}{To.isForbiddenBy = NULL;}
IF{To == FinalDest;}{ // then clean

FORALL(Location LocP, {LocP >> R.path;}, {R.path =>> LocP;});
}

};
cost{costFn(1)};
duration{durationFn(1, 1)};

}

// loads an empty robot with a container held by a crane in the same location
action LoadRobot(Agent G, Agent R, Container C) {

preconditions {
R.type == "ROBOT";
G.type == "CRANE";
R.at == G.at;
G.loaded == C;
R.loaded == NULL;

};
effects {

G.loaded = NULL;
R.loaded = C;

};
cost{costFn(1)};
duration{durationFn(1, 1)};

}

// unloads a robot hloding a container with a nearby crane
action UnloadRobot(Agent G, Agent R, Container C) {

preconditions {
R.type == "ROBOT";
G.type == "CRANE";
R.at == G.at;
R.loaded == C;

 G.loaded == NULL;
};
effects {

J. Guitton 36 CNRS-LAAS

HATP User Documentation September 2012

R.loaded = NULL;
 G.loaded = C;
};
cost{costFn(1)};
duration{durationFn(1, 1)};

}

// takes a container from the top of a pile with a crane in same location
action Take(Agent R, Container C, Pile P) {

preconditions {
R.type == "CRANE";
R.at == P.attached;
R.loaded == NULL;
C.top == P;

};
effects {

R.loaded = C;
FORALL(Container C2, {C.on == C2;}, {C2.top = P;});
C.top = NULL;
C.in = NULL;
C.on = NULL;
P.contains =>> C;

};
cost{costFn(1)};
duration{durationFn(1, 1)};

}

// puts a container helds by a crane on the top of a pile in same location
action Put(Agent R, Container C, Pile P) {

preconditions {
R.type == "CRANE";
R.at == P.attached;
R.loaded == C;

};
effects {

R.loaded = NULL;
FORALL(Container C2, {C2.top == P;}, {C2.top = NULL; C.on = C2;});
C.top = P;
C.in = P;
P.contains <<= C;

};
cost{costFn(1)};
duration{durationFn(1, 1)};

}

// set a location as forbidden for backtracking (new action added to add a loc to ?forbid)
action AddForbidden(Agent R, Agent R2, Location L) {

preconditions {};
effects {

L.isForbiddenBy = R;
};
cost{costFn(0)};
duration{durationFn(0, 0)};

}

// Top-level task for transporting a container K to a pile Target
method Transport(Container K, Pile Target) {

// do nothing (done)
empty{K.in == Target;};
// container already in location
{

preconditions {
EXIST(Pile Source1, {K.in == Source1;}, {Source1.attached == Target.attached;});

};
subtasks {

R = SELECT(Agent, {R.type == "CRANE"; R.at == Target.attached;});
S = SELECT(Pile, {K.in == S;});
1:Access(K, S);
2:Put(R, K, Target)>1;

};
}
// else
{

preconditions {
EXIST(Pile Source2, {K.in == Source2;}, {Source2.attached != Target.attached;});

};
subtasks {

S = SELECT(Pile, {K.in == S;});
R = SELECTORDERED(Agent, {R.type == "ROBOT";}, distanceMin(R.at, S.attached), <);
G1 = SELECT(Agent, {G1.type == "CRANE"; G1.at == S.attached;});

J. Guitton 37 CNRS-LAAS

HATP User Documentation September 2012

G2 = SELECT(Agent, {G2.type == "CRANE"; G2.at == Target.attached;});
1: GetReady(R, K, S);
2: LoadRobot(G1, R, K)>1;
3: NavFromTo(R, S.attached, Target.attached)>2;
4: UnloadRobot(G2, R, K)>3;
5: Put(G2, K, Target)>4;

};

}

}

// Brings robot R to loc To and/or accesses the container K in pile P
method GetReady(Agent R, Container K, Pile P) {

// not used
empty {R.type == "TOTO";};
// get container only
{

preconditions {
R.at == P.attached;

};
subtasks {

1: Access(K, P);
};

}
// do both: get container + brings robot
{

preconditions {
R.at != P.attached;

};
subtasks {

From = SELECT(Location, {R.at == From;});
To = SELECT(Location, {P.attached == To;});
1: Access(K, P);
2: NavFromTo(R, From, To)>1;

};
}

}

// Removes what's on top of container k to take it with crane C
method Access(Container K, Pile P) {

// never used (so defined by an impossible cond)
empty{P.attached == NULL;};
// on top
{

preconditions {
K.top == P;

};
subtasks {

C = SELECT(Agent, {C.type == "CRANE"; C.at == P.attached;});
1:Take(C, K, P);

};
}
// else (K not on top but in, exist P2)
{

preconditions {
K.top == NULL;
K.in == P;

};
subtasks {

C = SELECT(Agent, {C.type == "CRANE"; C.at == P.attached;});
Ktop = SELECT(Container, {Ktop.top == P;});
P2 = SELECT(Pile, {P2 != P; P2.attached == P.attached;});
1:Take(C, Ktop, P);
2:Put (C, Ktop, P2)>1;
3:Access(K, P)>2;

};
}

}

// Top-level task to navigate a robot R To, search for a path...
method Navigate(Agent R, Location To) {

empty {R.at == To;};
{

preconditions {};
subtasks {

From = SELECT(Location, {R.at == From;});
1:NavFromTo(R, From, To);

};
}

J. Guitton 38 CNRS-LAAS

HATP User Documentation September 2012

}

// Navigation method avoiding loops
method NavFromTo(Agent R, Location From, Location To) {

// do nothing - done
empty {R.at == To;};
// Adjacent destination
{

preconditions {
To >> From.adjacent;

};
subtasks {

1: MoveToNextStep(R, From, To, To);
};

}
// else
{

preconditions {
To !>> From.adjacent;

};
subtasks {

Next = SELECTORDERED(Location, {Next >> From.adjacent; Next !>> R.path;}, distanceMin(Next, To), <);
1: MoveToNextStep(R, From, Next, To);
2: NavFromTo(R, Next, To)>1;

};
}

}

// one step in navigation ; freeing the next location if needed
method MoveToNextStep(Agent R, Location From, Location Next, Location To) {

// never used
empty{From == Next;};
// adjacent node free
{

preconditions {
Next.occupied == false;

};
subtasks {

1: Move(R, From, Next, To);
};

}
// adjacent node not free
{

preconditions {
Next.occupied == true;
EXIST(Agent R2, {R2.type == "ROBOT";}, {R2.at == Next;});

};
subtasks {

R2 = SELECT(Agent, {R2.type == "ROBOT"; R2.at == Next;});
1: FreeLocation(R, R2, From, Next, To);
2: Move(R, From, Next, To)>1;

};
}

}

// Moves the R2 out of the way
method FreeLocation(Agent R, Agent R2, Location From, Location Next, Location To) {

// never used
empty{R == R2;};
// there is free space
{

preconditions {
EXIST(Location Lfree1, {Lfree1 >> Next.adjacent;},

 {Lfree1.occupied == false; Lfree1.isForbiddenBy == NULL;});
};
subtasks {

L = SELECTORDERED(Location, {L >> Next.adjacent; L.occupied == false;L.isForbiddenBy == NULL;},
distanceMin(L, To), >);

1: Move(R2, Next, L, L);
};

}
// Robot R can backtrack
{

preconditions {
EXIST(Location Lfree3, {Lfree3 >> From.adjacent;}, {Lfree3.occupied == false;});

};
subtasks {

LL = SELECT(Location, {LL >> From.adjacent; LL.occupied == false;});
1: AddForbidden(R, R2, Next); // here next must be added to ?forbid
2: Move(R, From, LL, To)>1;

J. Guitton 39 CNRS-LAAS

HATP User Documentation September 2012

3: Move(R2, Next, From, From)>2;
4: FreeLocation(R, R2, LL, From, To)>3;
5: Move(R, LL, From, To)>4;

};
}

}

// Top-level task to transport all containers from SourcePile to TargetPile
method TransportAll(Pile SourcePile, Pile TargetPile) {

// never used
empty {SourcePile == TargetPile;};
// piles in same location
{

preconditions {
SourcePile.attached == TargetPile.attached;

};
subtasks {

1: TakeAndPutAll(SourcePile, TargetPile);
};

}
// else
{

preconditions {};
subtasks {

1: TransportAllElsewhere(SourcePile, TargetPile);
};

}
}

method TakeAndPutAll(Pile SourcePile, Pile TargetPile) {
// done
empty {SourcePile.contains.size() == 0;};
// else
{

preconditions {
SourcePile.contains.size() > 0;

};
subtasks {

G = SELECT(Agent, {G.type == "CRANE"; G.at == SourcePile.attached;});
K = SELECT(Container, {K.top == SourcePile;});
1: Take(G, K, SourcePile);
2: Put(G, K, TargetPile)>1;
3: TakeAndPutAll(SourcePile, TargetPile)>2;

};
}

}

method TransportAllElsewhere(Pile SourcePile, Pile TargetPile) {

// done
empty {SourcePile.contains.size() == 0;};
// else
{

preconditions {
SourcePile.contains.size() > 0;

};
subtasks {

K = SELECT(Container, {K.top == SourcePile;});
1: Transport(K, TargetPile);
2: TransportAllElsewhere(SourcePile, TargetPile)>1;

};
}

}

// --
// some multi-tasks goals

// problem nav-c
method NavC(Agent R1, Location L1, Agent R2, Location L2) {

empty {R1 == R2;};
{

preconditions {};
subtasks {

1: Navigate(R1, L1);
2: Navigate(R2, L2)>1;

};
}

}

// problem PbD
method PbD(Container K1, Pile P1, Container K2, Pile P2) {

J. Guitton 40 CNRS-LAAS

HATP User Documentation September 2012

empty {K1 == K2;};
{

preconditions {};
subtasks {

1: Transport(K1, P1);
2: Transport(K2, P2)>1;

};
}

}

// problem all-c
method AllC(Pile P1A, Pile P1B, Pile P2A, Pile P2B, Pile P3A, Pile P3B) {

empty {P1A == P1B;};
{

preconditions {};
subtasks {

1: TransportAll(P1A, P1B);
2: TransportAll(P2A, P2B)>1;
3: TransportAll(P3A, P3B)>2;

};
}

}

}

// --

timePart { priority = -4; }

J. Guitton 41 CNRS-LAAS

	1 Introduction
	1.1 Overview of the document
	1.2 Human-Aware Task Planner
	1.2.1 Task planning
	1.2.2 HTN planning
	1.2.3 Agents and action streams
	1.2.4 Action costs and social rules

	2 The HATP formalism
	2.1 Entities and attributes
	2.1.1 Static vs dynamic attributes
	2.1.2 Atom or set attribute types
	2.1.3 Declaration of an entity

	2.2 Actions and Methods
	2.2.1 Actions
	2.2.2 Methods

	2.3 Operations in preconditions and effects
	2.3.1 Operations in preconditions
	Atom testing operators
	Set testing operators

	2.3.2 Operations in effects
	Atom modification
	Set modification

	2.4 Logical expressions
	2.4.1 Conjunction
	2.4.2 Disjunction
	2.4.3 Negation

	2.5 Variable assignment / substitution
	2.5.1 Free variable
	2.5.2 First satisfier precondition
	2.5.3 Sorted precondition

	2.6 Quantification
	2.6.1 Universal quantifier
	2.6.2 Existential quantifier

	2.7 Call term and conditional effect
	2.7.1 Call term
	2.7.2 Conditional effect

	2.8 Cost, duration and social rules
	2.8.1 Cost and duration functions
	2.8.2 Social rules
	Wasted time
	Effort balancing
	Control of intricacy
	Undesirable sequence

	2.8.3 Setting up costs

	2.9 Planning domain and problem
	2.9.1 Organization of the planning domain file
	Fact database
	HTN part
	Rules part

	2.9.2 Defining a problem

	2.10 HATP Extension: Belief Management
	2.10.1 The agents: myself and the others
	2.10.2 Beliefs representation
	2.10.3 Known and unknown information
	2.10.4 Communication actions
	2.10.5 General communication method

	3 Installing HATP
	3.1 HATPOnboard
	3.2 MsgConnector
	3.3 HATPConsole
	3.4 LibHATP

	4 Running HATP
	4.1 How works HATP ?
	4.1.1 Overview of the planning system
	4.1.2 Planning process
	4.1.3 Important files of HATPOnboard

	4.2 Launching the system
	4.3 Communication with HATP
	4.3.1 Communication API
	4.3.2 Basic communication syntax
	4.3.3 Requests syntax
	4.3.4 Answer of HATP

	4.4 Manipulation of plans
	4.4.1 LibHATP
	4.4.2 A simple application
	A The “Clean The Table” domain
	B The “Dock Worker Robot” domain

