
ANTLR
Ashley J.S Mills

<ashley@ashleymills.com>

Copyright © 2005 The University Of Birmingham

Table of Contents
1. Introduction ... 1
2. Background Information .. 1

2.1. The Lexer ... 1
2.2. The Parser .. 2
2.3. What is ANTLR's part in all this? .. 2

3. Installation .. 2
4. ANTLR Grammar Template ... 3
5. ANTLR Notation .. 4

5.1. Zero Or More .. 4
5.2. One Or More ... 4
5.3.Optional ... 4

6. Lexer Example ... 4
7. Simple Lexer/Parser Example ... 7
8. Expression Evaluation Example ... 9
9. Extending The Expression Evaluator .. 16

9.1. Nested Expressions ... 16
9.2. Adding The Sign Operator ... 18

10. A Translation Example - CSV to XHTML Table ... 21
11. Snippets From Behind The Scenes .. 26
12.Thanks .. 28
13. References (And links you may find useful) ... 28

1. Introduction
ANTLR (ANother Tool for Language Recognition) is a parser and translator generator tool that lets one define language grammars
in either ANTLR syntax (which is YACC and EBNF(Extended Backus-Naur Form) like) or a special AST(Abstract Syntax Tree)
syntax. ANTLR can create lexers, parsers and AST's. ANTLR is more than just a grammar definition language however, the tools
provided allow one to implement the ANTLR defined grammar by automatically generating lexers and parsers (and tree parsers)
in either Java (http://java.sun.com/, C++ (http://anubis.dkuug.dk/jtc1/sc22/wg21/ or Sather (http://www.icsi.berkeley.edu/~sather/.
ANTLR implements a PRED-LL(k) parsing strategy and affords arbitrary lookahead for disambiguating the ambiguous. An an-
swer to the question "What is ANTLR?" by Terrance Parr the creator of ANTLR can be found here:
http://www.jguru.com/faq/view.jsp?EID=77

2. Background Information
ANTLR is a compiler tool hence it's developer base is generally constrained to those whom desire to create translators of some
kind. In order to comprehend much of what will be discussed in this tutorial it is necessary to first get a feel of the terminology
used in this area of computer science and the basic concepts behind the operation of ANTLR. This section will begin with a brief
discussion of how a compiler operates.

2.1. The Lexer
Other names: Scanner, lexical analyser, tokenizer.

Programming languages are made up of keywords, and strictly defined constructs, the ultimate aim of the compilation process is to
translate the high level instructions of the programming language into the low-level instructions of the machine or virtual machine
that is the intended execution architecture. For example, a native C++ compiler compiles C++ code into machine language instruc-
tions that execute directly on the target hardware (or on some simulation of the target hardware), the standard Java compiler dis-
tributed by Sun Microsystems compiles Java source code to Java bytecode which is the machine language instruction set used by
the Java virtual machine, this bytecode can then be executed by any platform that implements the Java virtual machine.
A source program is written using some kind of editing tool that can produce a file which is comprised of statements and con-
structs that are allowed in the programming language being used. The actual text of the file is written using characters of a particu-
lar character set or subset of some character set, so a source file can be thought of as a stream of characters terminated by some
EOF (End Of File) marker that signifies the end of the source file.
A source file is streamed to a lexer on a character by character basis by some kind of input interface. The lexers job is to quantify

1

http://java.sun.com/
http://anubis.dkuug.dk/jtc1/sc22/wg21/
http://www.icsi.berkeley.edu/~sather/
http://www.jguru.com/faq/view.jsp?EID=77

the meaningless stream of characters into discrete groups that, when processed by the parser, have meaning. Each character or
group of characters quantified in this manner is called a token. Tokens are components of the programming language in question
such as keywords, identifiers, symbols, and operators. (Usually)The lexer removes comments and whitespace from the program,
and any other content that is not of semantic value to the interpretation of the program. The lexer converts the stream of characters
into a stream of tokens which have individual meaning as dictated by the lexer's rules. Similarly, your brain is probably grouping
the individual characters that make up each of the words in this sentence into tokens (words in this case, which have semantic
value to you), your job of determining where one token finishes and another begins is made a little easier however, because the
words in a sentence are already separated by spaces, it could be argued that an English sentence is already tokenised in this sense,
however, we can assume that some kind of grouping and recognition is occurring at the word level too. The stream of tokens gen-
erated by the lexer are received by the parser.
A lexer usually generates errors pertaining to sequences of characters it cannot match to a specific token type defined by one of it's
rules.

2.2. The Parser
Other Names: Syntactical analyser.
A lexer groups sequences of characters it recognises in the character stream into tokens with individual semantic worth, it does not
consider their semantic worth within the context of the whole program, this is the job of the parser. Languages are described by a
grammar, the grammar determines exactly what defines a particular token and what sequences of tokens are decreed as valid. The
parser organises the tokens it receives into the allowed sequences defined by the grammar of the language. If the language is being
used exactly as is defined in the grammar, the parser will be able to recognise the patterns that make up certain structures and
group these together. If the parser encounters a sequence of tokens that match none of the allowed sequences of tokens, it will is-
sue an error and perhaps try to recover from the error by making a few assumptions about what the error was.
The parser checks to see if the tokens conform to the syntax of the language defined by the grammar. Similarly your brain knows
what kinds of sentences are valid within a particular language such as English and it could be said that at this moment in time your
brain is parsing the words of this sentence and grouping them into what you understand as valid sequences, for instance, your
brain knows that a sentence ends when a full stop is encountered, one would not assume that the text following the full stop was
part of the same sentence. In addition to this your brain is also extracting meaningful information from the sentence. Usually the
parser will convert the sequences of tokens that it has been deliberately created to match into some other form such as an Abstract
Syntax Tree (AST). An AST is easier to translate to a target language because an AST contains additional information implicitly,
by nature of it's structure. Effectively, creating an AST is the most important part of a language translation process.
The parser generates one or more symbol table(s) which contain information regarding tokens it encounters, such as whether or
not the token is the name of a procedure or if it had some specific value, the symbol tables are used in the generation of object
code and in type checking, for example, so that an integer cannot be assigned to a string or whatever. ANTLR uses symbol tables
to speed up the matching of tokens, in that an integer is mapped to a particular token, then instead of matching the string that
would compose a textual description of that token, the integer that represents that token is matched instead, which is a lot quicker.
Eventually the AST will be translated to an executable format, some linking of libraries may be performed, this is not considered
the job of the compiler and is not of direct concern here.
A parser usually generates errors pertaining to sequences of tokens it cannot match to the specific syntactical arrangements al-
lowed, as decreed by the grammar.
Both lexers and parsers are recognizers, lexers recognize sequences of characters, parsers recognize sequences of Tokens. A lexer
or a parser converts a stream of elements (be they characters or tokens) and translates them to some other stream of elements such
as tokens representing larger structures or groups of elements or perhaps nodes in an abstract syntax tree. They are essentially the
same thing, however, traditionally lexers are associated with processing streams of characters and parsers are associated with pro-
cessing streams of Tokens.
It is recommended that you read Building Recognizers By Hand by Terrance Parr the creator of ANTLR, it can be found here
http://www.antlr.org/book/byhand.pdf, to get an insight into how one would go about creating a recogniser in Java, and from this
you can abstract how it can be done in any programming language. When you have the time you should read all the documentation
that came with the ANTLR installation.

2.3. What is ANTLR's part in all this?
ANTLR lets you define the rules that the lexer should use to tokenize a stream of characters and the rules the parser should use to
interpret a stream of tokens. ANTLR can then generate a lexer and a parser which you can use to interpret programs written in
your language and translate them other languages and AST's. The design of ANTLR affords much extensibility and it has many
applications.

3. Installation
The documentation for the installation is written under the assumption that the reader has some experience of installing software
on computers and knows how to change the operating environment of the particular operating system they are using. The docu-
ments entitled Configuring A Windows Working Environment [../winenvars/winenvarshome.html] and Configuring A Unix Work-
ing Environment [../unixenvars/unixenvarshome.html] are of use to people who need to know more.

1. Obtain the ANTLR download by following the download section links at http://www.antlr.org/

ANTLR

2

../winenvars/winenvarshome.html
../winenvars/winenvarshome.html
../winenvars/winenvarshome.html
../winenvars/winenvarshome.html
../winenvars/winenvarshome.html
../unixenvars/unixenvarshome.html
../unixenvars/unixenvarshome.html
../unixenvars/unixenvarshome.html
../unixenvars/unixenvarshome.html
../unixenvars/unixenvarshome.html
http://www.antlr.org/

2. Unzip to a suitable location.

3. Add, /path/to/where/you/unzipped/ANTLR/antlr.jar and /path/to/where/you/unzipped/ANTLR to your
classpath, do not include a trailing slash after the directory name otherwise you may encounter problems.

4. ANTLR Grammar Template
An ANTLR grammar file has a number of components, some of which are optional and some of which are mandatory, the 'tem-
plate' below shows all the components that make up an ANTLR grammar file and then briefly describes them, do not expect to
comprehend this instantly, things will become clearer the further you progress into this document. And then you may use this tem-
plate to remind yourself what is allowed where within an ANTLR grammar.

header {
// stuff that is placed at the top of <all> generated files

}

options { options for entire grammar file }

{ optional class preamble - output to generated classfile
immediately before the definition of the class }
class YourLexerClass extends Lexer;
// definition extends from here to next class definition
// (or EOF if no more class defs)
options { YourOptions }
tokens...

lexer rules...
myrule[args] returns [retval]

options { defaultErrorHandler=false; }
: // body of rule...
;

{ optional class preamble - output to generated classfile
immediately before the definition of the class }
class YourParserClass extends Parser;
options { YourOptions }
tokens...
parser rules...

{ optional class preamble - output to generated classfile
immediately before the definition of the class }
class YourTreeParserClass extends TreeParser;
options { YourOptions }
tokens...
tree parser rules...

// arbitrary lexers, parsers and treeparsers may be included

header {
// stuff that is placed at the top of <all> generated files

}

The textual content of the header will be copied verbatim to the top of all files generated when ANTLR is ran on the gram-
mar.

{ optional class preamble - output to generated classfile
immediately before the definition of the class }

class YourLexerClass extends Lexer;
// definition extends from here to next class definition
// (or EOF if no more class defs)
options { YourOptions }
tokens...
lexer rules...

This begins with an optional class preamble, any text placed here will be copied verbatim to the top of the class the statement
prefixes. The options section contains options specific to this class, for example:

options {
k = 2; // Set token lookahead to two

ANTLR

3

tokenVocabulary = Befunge; // Call it's vocabulary "Befunge"
defaultErrorHandler = false; // Don't generate parser error handlers

}

Extensive detail pertaining to the various options available can be found in the ANTLR documentation that is installed with
everything else, i.e /path/to/where/you/installed/ANTLR/doc/options. The tokens section lets you explicitly de-
fine literals and imaginary tokens, e.g:

tokens {
EXPR; // Imaginary token
THIS="that"; // Literal definition
INT="int"; // Literal definition

}

The lexer rules come next and have the general form:

rulename [args] returns [retval]
options { defaultErrorHandler=false; }
{ optional initiation code }
: alternative_1
| alternative_2
...
| alternative_n
;

For example:

INT : ('0'..'9')+; // Matches an integer

There can be an arbitrary number of rules.
The other two sections have the same layout as the one described. There can be zero or more lexers, parsers and treeparsers and
they can come in any order. The scope of the a class is defined as extending from the class's declaration to the next class declara-
tion, or if it is the last class declaration, to the end of the file.

5. ANTLR Notation
ANTLR specifies it's lexical rules and parser rules using the almost exactly the same notation, ANTLR notation is based on
YACC's notation and there are some EBNF constructs thrown in for good measure. A rule is simply a sequence of instructions
which describe a particular pattern that ANTLR should match.

5.1. Zero Or More
ANTLR uses the notation (expression)* to indicate that the pattern matching expression specified inside the parentheses must be
matched zero or more times.

5.2. One Or More
ANTLR uses the notation (expression)+ to indicate that the pattern matching expression specified inside the parentheses must be
matched one or more times.

5.3. Optional
ANTLR uses the notation (expression)? to indicate that the pattern matching expression specified inside the parentheses must be
matched zero or one times, in other words, it's optional.

6. Lexer Example
This example illustrates a very simple lexer that matches alpha and numeric strings. It is available to download here: simple.g
[files/simple.g].

class SimpleLexer extends Lexer;

options { k=1; filter=true; }

ALPHA : ('a'..'z'|'A'..'Z')+
{ System.out.println("Found alpha: "+getText()); }
;

NUMERIC : ('0'..'9')+
{ System.out.println("Found numeric: "+getText()); }
;

EXIT : '.' { System.exit(0); } ;

ANTLR

4

files/simple.g

This will be explained in sections, lets begin with the first line:

class SimpleLexer extends Lexer;

This is the lexer declaration, pretty straightforward, it's scope is from the line shown to the next class declaration or, if there are no
more class declarations, until the end of the file.

options { k=1; filter=true; }

Here some basic options are set. k is set to one, k is the lookahead value. For example, with a lookahead of one, ANTLR would not
be able to tell the difference between:

SILLY1 : "ab" ;
SILLY2 : "ac" ;

And when trying to parse a file containing these lexer rules, ANTLR will issue the error:

warning: lexical nondeterminism between rules SILLY1 and SILLY2 upon
silly.g:0: k==1:'a'

Because if the lexer encountered "ab", with a lookahead of one, it would get confused as to whether it should match the rule
SILLY1 or the rule SILLY2 since they both begin with 'a'. With k=2, that is, a lookahead of two, the lexer will not only compare
the first character but also the second character and hence will be able to disambiguate between the two cases. There are cases
when increasing the lookahead does not work or when it is not efficient, these cases will be discussed in another section. Interest-
ingly, if you actually implement this example with k=1, it will match "ab" but not "ac" because ANTLR matches whichever of the
ambiguous rules are defined first.
The filter=true option sets filtering on, which means that the lexer will ignore all input that does not exactly match one of the non-
protected rules (protected rules can only be called by other rules). It can also be set to a protected rule name to assign handling of
non-matches to a particular rule, for example:

options { filter=BLAH; }
protected BLAH : { _ttype = Token.SKIP; } ;

Has the same effect as setting filter to true. However, using the filter as I have just shown is not recommended as this kind of use
would be entirely redundant.

ALPHA : ('a'..'z'|'A'..'Z')+
{ System.out.println("Found alpha: "+getText()); }
;

This is an example of a lexer rule, it matches any sequence of one or more characters indicated by the ranges specified. The '+'
means match one or more of whatever was specified in the group preceding it, in this case either anything within the range of char-
acters 'a'..'z' or 'A'..'Z', the ranges are separated by a '|' character which signifies a logical OR. An action has also been specified for
this match which will only be executed upon a successful match, the action is simply a print statement that indicates that an alpha
type token has been found and then the token text is printed with a call to getText() which returns the encapsulating tokens text
data.

NUMERIC : ('0'..'9')+
{ System.out.println("Found numeric: "+getText()); }
;

This is very similar to the ALPHA rule but instead matches sequences of one or more characters within the range '0'..'9', if a match
occurs it prints a message indicating it has found a numeric token type and then prints the token's text.

EXIT : '.' { System.exit(0); } ;

This matches the literal character '.', (when unquoted '.' can be within rules; as a wild-card that will "match any character" encoun-
tered. The action performed when it is matched is to exit the program with an exit status of zero signifying that the program exited
normally.

Note
When using the filter=true option, if one is processing actual files then one should always include a rule to match new-
lines, because the lexer needs to be told that a newline has occurred in order to increment the line count, otherwise the
lexer would be stuck on one line! A typical newline rule, showing the call to the newline() method to handle the newlines

ANTLR

5

correctly is shown below:

NEWLINE : ("\r\n" // DOS
| '\r' // MAC
| '\n' // Unix

)
{ newline();

$setType(Token.SKIP);
}

;

The ANTLR directive $setType(tokenType) is used to indicate that these sequences of characters should be ignored.
After defining our lexer, ANTLR s ran on the source file to generate the various Java (or C++ or Sather) files:

java antlr.Tool simple.g

The command displays the version information and then, if no errors are present in the source file, generates the output files. If er-
rors are present in the source file and are detected then nice messages are displayed describing them. If the errors are not fatal, the
files will still be produced and usually some kind of output will be produced, it's just that the output files may not compile if errors
were encountered. The text produced when error are encountered can be quite informative such as this one, generated when I de-
liberately omitted, the rule terminating ';' character, from the end of a rule:

ANTLR Parser Generator Version 2.7.1 1989-2000 jGuru.com
simple.g:13: warning:did you forget to terminate previous rule?

The line number indicated is the start of the rule that follows the one I forgot to terminate. In this case, ANTLR recovered from
this error and the output files still worked as desired. The output files produced are SimpleLexer.java and SimpleLexerTo-
kenTypes.java.
SimpleLexer.java, the lexer produced implements TokenStream which means that it will return the next token in the token
stream when somebody calls nextToken() from an instantiation of SimpleLexer (or whatever the lexer's name is). It contains meth-
ods which are discussed in more detail in the ANTLR documentation.
SimpleLexerTokenTypes.java contains the token type definitions defined as integer constants, for efficient comparison at
runtime. Token tables are also used for type checking before translation. In order to use the lexer some kind of program must in-
voke it, here is a Java program which does just that:

import java.io.*;
public class Main {

public static void main(String[] args) {
SimpleLexer simpleLexer = new SimpleLexer(System.in);
while(true) {

try {
simpleLexer.nextToken();

} catch(Exception e) {}
}

}
}

A new instance of SimpleLexer is created with the constructor utilising the SimpleLexer(InputStream in) constructor that is auto-
matically generated. An infinite loop is then entered which keeps grabbing the next token from the input stream. The input stream
is System.in which means that an input interface will be presented on the command line and input will be passed to the lexer every
time the enter key is hit (hence no need for newline handling).
All of the java files are compiled by issuing:

javac *.java

The Main.class produced is executed by issuing:

java Main

An example session using this Lexer is shown below:

This Lexer recognises strings and numbers: hello 22 goodbye 33
Found alpha: This
Found alpha: Lexer
Found alpha: recognises
Found alpha: strings
Found alpha: and
Found alpha: numbers
Found alpha: hello
Found numeric: 22
Found alpha: goodbye
Found numeric: 33
It ignores everything else: -=+/#
Found alpha: It
Found alpha: ignores

ANTLR

6

Found alpha: everything
Found alpha: else
.

This Lexer exclusively recognises alpha and numeric content, if it is passed the string "11aa33hi" it will not treat it as a single
string but will break up the alpha and numeric parts, as it was specified to do:

11aa33hi
Found numeric: 11
Found alpha: aa
Found numeric: 33
Found alpha: hi
.

That about wraps up this Lexer introduction but it should be noted that usually a Lexer is used in combination with a Parser, this is
example is totally contrived to illustrate some of the concepts. You should consult the ANTLR documentation and check out the
other examples in this text for a more thorough comprehension of the Lexers part in the translation process.

7. Simple Lexer/Parser Example
A simple lexer and parser will be discussed. The Job of the lexer will be to tokenise the input stream into the tokens; NAME, AGE,
DOB(Date Of Birth) and SEMI(semicolon). The parsers job will be to recognise the sequence DOB NAME AGE(SEMI) and output
this as Name: name, Age: nn, DOB nn/nn/nn. The lexer and parser will be defined in one file simple2.g [files/simple2.g]:

class SimpleParser extends Parser;

entry : (d:DOB n:NAME a:AGE(SEMI)
{

System.out.println(
"Name: " +
n.getText() +
", Age: " +
a.getText() +
", DOB: " +
d.getText()

);
})*
;

class SimpleLexer extends Lexer;

NAME : ('a'..'z'|'A'..'Z')+;

DOB : ('0'..'9' '0'..'9' '/')=>
(('0'..'9')('0'..'9')'/')(('0'..'9')('0'..'9')'/')('0'..'9')('0'..'9')

| ('0'..'9')+ { $setType(AGE); } ;

WS :
(' '
| '\t'
| '\r' '\n' { newline(); }
| '\n' { newline(); }
)
{ $setType(Token.SKIP); }

;

SEMI : ';' ;

The parser is the first class to be specified, however, order does not matter. It is considered better practice by some to start at the
most abstract level possible and then work toward the bottom, i.e top down.

entry : (d:DOB n:NAME a:AGE(SEMI)
{

System.out.println(
"Name: " +
n.getText() +
", Age: " +
a.getText() +
", DOB: " +
d.getText()

);
})*
;

You can see that the first rule is entry, this is the rule which will be called from the main method to start the parsing the input. It
says that the parser should look for a DOB token followed by a space followed by a NAME token, followed by a space followed by
an AGE token and terminated with a SEMI token which is a semicolon (the reason for SEMI being in brackets is so that it can be

ANTLR

7

files/simple2.g

placed immediately after AGE without ANTLR thinking we are trying to reference some token called AGESEMI, it is looking for:

DOB NAME AGE;

If it is successful in finding this sequence of tokens, the variables indicated immediately before the token names (a in a:AGE etc),
will take on the values of the tokens they prefix then an action will be performed, this is indicated by the opening brace, the in-
tended action is to print "Name: name, Age: nn, DOB: nn/nn/nn" where "n" signifies some digit. Notice the scope of the opening
parentheses, it's matching parentheses occurs immediately after the closing brace of the action section. It is postfixed with a '*'
meaning that this sequence should be matched zero or more times. Let's take a look at the definitions of these tokens in the Lexer:

NAME : ('a'..'z'|'A'..'Z')+;

A simple sequence of one or more lower-case OR upper-case letters.

DOB : ('0'..'9' '0'..'9' '/')=>
(('0'..'9')('0'..'9')'/')(('0'..'9')('0'..'9')'/')('0'..'9')('0'..'9')

| ('0'..'9')+ { $setType(AGE); } ;

If DOB and AGE had been specified like this:

DOB : ('0'..'9')('0'..'9')'/' ('0'..'9')('0'..'9')'/' ('0'..'9')('0'..'9') ;

AGE : ('0'..'9')+ ;

ANTLR would have issued the warning:

warning: lexical nondeterminism between rules DOB and AGE upon
simple2.g:0: k==1:'0'..'9'

This is because both of the rules mentioned begin with ('0'..'9'), this means (with a lookahead of one), if the lexer encountered a
digit, it would not know which of the statements to try so It would have to try the first one and then AGE would never be checked
and the parser could never find the sequence it was looking for.
One way around this would be to specify a parser lookahead of 3, that is, include an options statement for the parser like:

options { k=3; }

This would enable the parser to look forward a maximum of three where it is necessary to disambiguate and it would see that if it
encountered two digits followed by a forward slash then it should predict the DOB token route and if it does not match that third
lookahead value with a forward slash to choose the AGE route.
If there are a lot of alternatives all that can be distinguished by changing the lookahead then it is preferable to use this method of
increasing the lookahead value but if there is only one or very few alternatives then it is preferable to use a syntactic predicate in-
stead which is what is used in the example. The syntactic predicate in the example is:

DOB : ('0'..'9' '0'..'9' '/')=>

This says that the lexer should see if it can find two digits followed by a a forward slash, if it can then the lexer should go on to try
to match the sequence specified:

(('0'..'9')('0'..'9')'/')(('0'..'9')('0'..'9')'/')('0'..'9')('0'..'9')

If it is successful in doing so then the token will be matched as DOB, the original rule. If the syntactic predicate fails and it does
not match two digits followed by a forward slash then the lexer should try to match the rule specified as the first alternative, after
the '|':

| ('0'..'9')+ { $setType(AGE); } ;

The implication is that if the rule is matched then the action specified after will be executed, which is a call to the $setType(type)
ANTLR directive, note that this is not a Java statement but an ANTLR one and is prefixed with a '$'. It has been shown how a syn-
tactic predicate can disambiguate between two rules that begin with the same characters.

WS :
(' '
| '\t'
| '\r' '\n' { newline(); }

ANTLR

8

| '\n' { newline(); }
)
{ $setType(Token.SKIP); }

;

The WS rule matches white space, hence "WS". The rule will match a space (' ') OR a tab ('\t') OR a carriage return followed by
newline (DOS NEWLINE) ('\r' '\n') OR a Unix newline ('\n') delimited via a single newline character, notice that the DOS and
Unix newline alternatives have actions associated with them, these actions are calls to the newline() method which tells ANTLR to
bump up it's line count and goto the next line. Without this the lexer would be stuck on one line! All the alternatives are grouped
together within parenthesis and they have an overall action associated with them, this is to set the token type to the ANTLR spe-
cial type Token.SKIP which causes the tokens to be ignored.

SEMI : ';' ;

This simply matches a semicolon (';').
The Lexer and Parser are setup using a main method, this could have been included as a block of code within the Parser block, (or
lexer block) in the form of a static main method so that there would be no need to bother writing an extra class. For the sake of
clarity, an extra class will be used here:

import java.io.*;
public class Main {
public static void main(String args[]) {

DataInputStream input = new DataInputStream(System.in);
SimpleLexer lexer = new SimpleLexer(input);
SimpleParser parser = new SimpleParser(lexer);
try {
parser.entry();

} catch(Exception e) {}
}

}

Pretty straightforward, instantiation of an input-stream which is passed to the constructor of the lexer and then the lexer is passed
to the constructor of the parser. Once the parser has been created, the entry method defined in our parser that does all the work is
invoked. This is oriented toward receiving input from a file via redirection but one can just as happily input via the prompt that is
produced if the main method is invoked without redirecting some input to it. Here is the input file, test.txt

06/06/82 Peter 20;
03/04/83 Rosie 19;
04/05/81 Mikey 21;

After creating the classes with:

java antlr.Tool Simple2.g

And compiling everything:

java *.java

Main is invoked:

java Main < test.txt

This produces the output:

Name: Peter, Age: 20, DOB: 06/06/82
Name: Rosie, Age: 19, DOB: 03/04/83
Name: Mikey, Age: 21, DOB: 04/05/81

An error can be simulated by changing Mikey's age to "a21", which produces the output:

Name: Peter, Age: 20, DOB: 06/06/82
Name: Rosie, Age: 19, DOB: 03/04/83
line 3: expecting AGE, found 'a'

8. Expression Evaluation Example
It has come to that time where it is necessary to step into the obligatory expression evaluator example. The expression evaluator
will start off simple, more advanced features will then be added. The initial ANTLR grammar for the expression evaluator, expres-
sion.g [files/expression.g] is shown below:

class ExpressionParser extends Parser;
options { buildAST=true; }

ANTLR

9

files/expression.g

expr : sumExpr SEMI!;
sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;
prodExpr : powExpr ((MUL^|DIV^|MOD^) powExpr)* ;
powExpr : atom (POW^ atom)? ;
atom : INT ;

class ExpressionLexer extends Lexer;

PLUS : '+' ;
MINUS : '-' ;
MUL : '*' ;
DIV : '/' ;
MOD : '%' ;
POW : '^' ;
SEMI : ';' ;
protected DIGIT : '0'..'9' ;
INT : (DIGIT)+ ;

{import java.lang.Math;}
class ExpressionTreeWalker extends TreeParser;

expr returns [double r]
{ double a,b; r=0; }

: #(PLUS a=expr b=expr) { r=a+b; }
| #(MINUS a=expr b=expr) { r=a-b; }
| #(MUL a=expr b=expr) { r=a*b; }
| #(DIV a=expr b=expr) { r=a/b; }
| #(MOD a=expr b=expr) { r=a%b; }
| #(POW a=expr b=expr) { r=Math.pow(a,b); }
| i:INT { r=(double)Integer.parseInt(i.getText()); }
;

The grammar definition begins with the parser section, this will be explained step by step.

class ExpressionParser extends Parser;
options { buildAST=true; }

The class is declared normally and then the option buildAST=true is specified, this signifies that the parser should build an
AST(Abstract Syntax Tree) as it parses the input tokens. Special notation will be used to specify how the tree should be build up.

expr : sumExpr SEMI!;
sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;

The top level rule of the expression is expr, this simply references the next element down, indicating that an expr can be a sum-
Expr, the rule also specifies that an expression is terminated with a SEMI. This rule is redundant, in that, the top rule could have
been sumExpr since expr references it directly, the addition being SEMI! (which would have to be appended to prodExpr. The rea-
son for this is that it makes it clearer that the overall thing being matched is an expression and not a sum expression. The terminat-
ing SEMI is postfixed with a '!', this tells the AST builder not to include this token in the tree (whereupon it would postfix the
whole expression).
The sumExpr is an expression that consists of a prodExpr followed by zero or more (PLUS OR MINUS) prodExpr, sequences, this
is so that sumExpr can recognise sequences such as:

prodExprPLUSprodExprMINUSprodExpr

Because zero or more of these sequences must be present for a match, expressions without PLUS and MINUS can be constructed
because an expression can just be a prodExpr without the additions. This will form a hierarchy whereby due to this kind of option-
ality (zero or more), an expression can just be an atom which is an INT, this will be explained in more detail later.
An AST is a special kind of tree that can have an arbitrary number of subtrees (children) which are ASTs themselves. When walk-
ing the tree one can manipulate the order in which nodes are visited with all the expressiveness of the implementation language
(Java, C++ or Sather).
The PLUS and MINUS token references are postfixed with the caret ('^') character. This is an ANTLR directive specific to the cre-
ation of AST's, it specifies that the token the caret postfixes should become the root of the current AST or AST subtree. The first
caret-postfixed token encountered in an expression being evaluated will become the root of the AST overall. If a caret-postfixed
token is encountered whilst evaluating a child of a root, the child element will become a new subtree with a root equal to the caret-
postfixed token.
The AST structure is defined in such a way that operator precedence is obeyed. In this case the tree will be constructed such that
the a root will represent an operator and the children will represent it's operands. When the tree is parsed it will be parsed in an or-
dinary fashion, evaluating it's children from left to right recursively. The rule:

sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;

ANTLR

10

Dictates that the first and second children of a sumExpr must be prodExpr's. It is because of this that the desired precedence is
guaranteed. Take a look at the prodExpr rule:

prodExpr : powExpr ((MUL^|DIV^|MOD^) powExpr)* ;

This says that a prodExpr must consist of a powExpr followed by zero or more (MUL OR DIV OR MOD AND powExpr) se-
quences. Multiplication, division and modulo have been grouped together because they have equal precedence. The caret ('^') is
used again to specify that the root of this subtree will be the operator that is specified in the expression, hence the first and second
children can only be powExpr's.
The children of the root will be evaluated before applying them to the root so the powExpr's will be evaluated first, hence the
value of the powExpr will be calculated before applying the operator of the prodExpr which is the desired course of action since a
power expression has a higher precedence than a product expression, which in turn has a higher precedence than a sum expression
hence the evaluation order of the expression is determined by the structure of the AST created which in turn forces the desired
precedences.

powExpr : atom (POW^ atom)? ;
atom : INT ;

It can be seen that a powExpr consists of an atom followed by an optional (POW atom) sequence. This means that the sequence
must occur zero or one times. Why is this rule not defined as zero or more times like this:

powExpr : atom (POW^ atom)* ;

Because this powExpr is broken. What happens if more than one power is specified? The order of evaluation will occur from left
to right but it should occur from right to left (amongst the POWs) because an expression such as 3^2^2 should evaluate as
(3^(2^2)) but this will be evaluated as ((3^2)^2), a fix for this will be examined later. By only allowing a maximum of one (POW
atom) sequence, this problem is not encountered but the user is limited to a single level of exponential. Since a multiple exponen-
tial is the same as a single exponential equal to the product of the individual exponentials, this should not be a problem.
The point is that the subtrees will be evaluated first, so the AST is created so that AST subtrees that define operators of higher
precedence are only allowed to be children of AST subtrees that define operators of a lower precedence so that the operation of
highest precedence is always evaluated first. It can be seen that the final rule is for an atom which is an INT. So the simplest possi-
ble expression would be a single integer.

Note
You may find it easier to think of the AST defined here as being like a binary tree because each of the operators only has
two children, this is more intuitive and perhaps easier to understand. Effectively, maintaining the analogy, the left and
right subtrees of the root will be evaluated before applying them to the root of the tree, that is the tree would be ns-
traversed in a postfix manner; left, right, root.

Let's take another look at the parser in one block:

class ExpressionParser extends Parser;
options { buildAST=true; }

expr : sumExpr SEMI!;
sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;
prodExpr : powExpr ((MUL^|DIV^|MOD^) powExpr)* ;
powExpr : atom (POW^ atom)? ;
atom : INT ;

How can an expression be just an atom? Assume we are trying to match the expression "5;". This consists of the tokens INT and
SEMI. The parser will try to match the token INT with one of it's rules. It looks at the first rule, expr, and sees the subrule, sum-
Expr, referenced so it takes a look at that. The first component of sumExpr is prodExpr and so the parser tries to match the token
against prodExpr. The first component of prodExpr is powExpr so the parser tries to match the token against powExpr.
The first component of powExpr is an atomso the parser tries to match the token against atom, atom is defined as consisting of the
token INT which is what the parser is looking for so atom is matched which means that powExpr is matched, which means that
prodExpr is matched which means that sumExpr is matched which means that the first component of expr has been matched. The
next token to be matched is SEMI which matches the second component of expr so expr is matched. Here is a diagram which at-
tempts to illustrate this:

Figure 1. INT SEMI Match

ANTLR

11

The red lines (or dark lines if you are in greyscale), are supposed to illustrate failed matches and the line directions show how the
order the parser checks the rules. The green lines are supposed to illustrate correct matches. The line from SEMI to SEMI however
is an exception, and is green because I wanted to illustrate that SEMI was a match, I suppose that the first line from INT is not re-
ally a fail either but if another colour had been used the diagram would have looked odd.
Do the rules handle precedence correctly? Let's take a look. Imagine that the expression 1+2*5;, we know that this should evalu-
ate as (1+(2*5) and not ((1+2)*5). This is the sequence ((INT)(PLUS)(INT)(MUL)(INT)(SEMI).
The parser can only generate the tree:

Figure 2. 1+(2*5) Binary Tree

Because a sumExpr cannot be a subtree of a prodExpr, as is defined in the parser grammar. It is because of the defined structure
that precedence rules are maintained. Here is the AST version of the tree shown above:

Figure 3. 1+(2*5) AST

ANTLR

12

An AST can have an arbitrary number of children, the children are referred to as "siblings" with respect to each other. One can de-
velop trees such as:

Figure 4. Sum AST

Where sum is some function that accepts multiple arguments and returns the sum of the arguments, you would of course specify
what to do when encountering a particular node of the tree by using a treeparser of some sort, this example has a treeparser (called
a treewalker because the tree is walked) which is discussed later. The next section of the grammar is the lexer:

class ExpressionLexer extends Lexer;

PLUS : '+' ;
MINUS : '-' ;
MUL : '*' ;
DIV : '/' ;
MOD : '%' ;
POW : '^' ;
SEMI : ';' ;
protected DIGIT : '0'..'9' ;
INT : (DIGIT)+ ;

These rules are pretty self-explanatory and define the tokens used in the parser just described. DIGIT is a protected rule, this
means it cannot be referenced externally, only by internal rules. It is used in the definition of the INT rule which says, "one or
more digits". If protected was not specified ANTLR would generate a nondeterminism error between DIGIT and INT.
The next section of the grammar is the tree parser:

{import java.lang.Math;}
class ExpressionTreeWalker extends TreeParser;

expr returns [double r]
{ double a,b; r=0; }

: #(PLUS a=expr b=expr) { r=a+b; }
| #(MINUS a=expr b=expr) { r=a-b; }
| #(MUL a=expr b=expr) { r=a*b; }
| #(DIV a=expr b=expr) { r=a/b; }
| #(MOD a=expr b=expr) { r=a%b; }
| #(POW a=expr b=expr) { r=Math.pow(a,b); }
| i:INT { r=(double)Integer.parseInt(i.getText()); }
;

The line before the the class declaration is a header that will be pulled into the generated Java file immediately before the class
declaration in the generated file. Whitespace is significant between the opening and closing braces hence no gaps have been left
because putting excess spaces there is unnecessary. java.Math is imported so the Java Math classes can be used. Following the
class declaration is the expr rule definition that returns the double, r:

expr returns [double r]
{ double a,b; r=0; }

Immediately preceding the opening of the rule is a Java code section which defines two doubles, a and b, and intialises r to zero.

: #(PLUS a=expr b=expr) { r=a+b; }
| #(MINUS a=expr b=expr) { r=a-b; }
| #(MUL a=expr b=expr) { r=a*b; }

ANTLR

13

| #(DIV a=expr b=expr) { r=a/b; }
| #(MOD a=expr b=expr) { r=a%b; }
| #(POW a=expr b=expr) { r=Math.pow(a,b); }
| i:INT { r=(double)Integer.parseInt(i.getText()); }
;

The rule definitions all take use the AST syntax, that is:

#(ROOT child.1 child.2 ... child.n);

The first rule says, if PLUS is found as a root, assign the values of the evaluation of the two child subtrees to the variables 'a' and b
respectively. The rule does not literally say "evaluate the subtrees", this will happen automatically due to the fact that the rule says
to match a tree with PLUS as a root that has two expr's as children. It is in the matching of these children, in order to match the
whole rule, that the subtrees will be evaluated. The action specified upon a successful match, is to set r equal to a+b.
In this case, it is obvious with a lookahead of one which rule to match if PLUS is found as a root because this is the only rule that
has PLUS as the first element. This may not always be the case, consider adding the ability to specify the sign of a number (as
many times as you like, -+-+-5), then the PLUS and MINUS tokens would not be used exclusively for the dyadic addition rule but
would also occur as the first element of the monadic sign rule. With a lookahead of one there would be conflicts, this issue is dis-
cussed later.

| i:INT { r=(double)Integer.parseInt(i.getText()); }

This alternative is more interesting than the others so will get it's own special mentioning. It simply assigns to r, the value of the
INT found. This handles the "base case", as such.
The treeparser, is being used to walk the tree and evaluate the expressions entered. Let's look at how this all fits together, here is
Main.java [files/Main.java]:

import java.io.*;
import antlr.CommonAST;
import antlr.collections.AST;
import antlr.debug.misc.ASTFrame;
public class Main {
public static void main(String args[]) {

try {
DataInputStream input = new DataInputStream(System.in);

ExpressionLexer lexer = new ExpressionLexer(input);

ExpressionParser parser = new ExpressionParser(lexer);
parser.expr();

CommonAST parseTree = (CommonAST)parser.getAST();
System.out.println(parseTree.toStringList());
ASTFrame frame = new ASTFrame("The tree", parseTree);
frame.setVisible(true);

ExpressionTreeWalker walker = new ExpressionTreeWalker();
double r = walker.expr(parseTree);
System.out.println("Value: "+r);

} catch(Exception e) { System.err.println("Exception: "+e); }
}

}

First we import all the necessary classes and open the class and static main method as usual, the contents of main are wrapped
within a try...catch statement to catch any errors generated, if there are any errors, the error is printed to stdout.

DataInputStream input = new DataInputStream(System.in);

A DataInputStream is setup.

ExpressionLexer lexer = new ExpressionLexer(input);

The lexer is created and told to accept data from the inputstream.

ExpressionParser parser = new ExpressionParser(lexer);
parser.expr();

The parser is created, using the lexer to deliver tokens. The expr() method is called which tells the parser to match an expression
as defined by the parser rules.

ANTLR

14

files/Main.java

CommonAST parseTree = (CommonAST)parser.getAST();

Remember that options { buildAST=true; } was specified? Here a CommonAST object is created and assigned a reference to the
AST created by the parser's expr rule. It has to be downcast from collections.AST.

System.out.println(parseTree.toStringList());

The AST is printed using the CommonAST toStringList() method.

ASTFrame frame = new ASTFrame("The tree", parseTree);
frame.setVisible(true);

A new ASTFrame is created, which is a frame designed for viewing AST's imported from antlr.debug.misc.ASTFrame. The frame
is created with the title "The tree" and the CommonAST object created before. The frame is made visible, this will generate a frame
showing the AST.

double r = walker.expr(parseTree);
System.out.println("Value: "+r);

A new double is defined and assigned the value of the expression provided by calling the expr rule that was defined for the
TreeParser created (which is translated to a Java method). The AST is passed as an argument, finally the value of the expression is
printed to stdout.
Let's go through an example expression to see what output is generated. Assume that all classes have been generated by running
ANTLR on the grammar. The expression:

1+2-3*4/5^6;

Is placed in a file called test.txt and used as input to Main:

java Main < test.txt

The tree expressed as a list via toStringList() is output:

(- (+ 1 2) (/ (* 3 4) (^ 5 6))) ;

The AST comes up in the ASTFrame:

Figure 5. AST of (1+2-3*4/5^6)

ANTLR

15

And the value is output:

Value: 2.999232

That concludes the basic expression evaluator, the next section will discuss some extensions.

9. Extending The Expression Evaluator

9.1. Nested Expressions
The old expression evaluator did not allow nesting of brackets, in fact brackets were not mentioned at all. Try to think how you
would add nested brackets to the evaluator. How would you get the evaluator to create an AST such that the innermost nested
brackets are evaluated first? The solution is quite simple, possibly a little subtle? First of all lets take a look at the content of the
old parser:

expr : sumExpr SEMI;
sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)*;
prodExpr : powExpr ((MUL^|DIV^|MOD^) powExpr)* ;
powExpr : atom (POW^ atom)? ;
atom : INT ;

powExpr has a higher precedence than prodExpr and is made to be a child of a prodExpr because of the tree structure. During a
transversal of the tree, the children will be evaluated independently of the root because the values of the evaluation of the children
are assigned to the variables a and b before the operation is applied and the result returned:

#(PLUS a=expr b=expr) { r=a+b; }

See that a and b have to be evaluated first because the operation is only executed after a successful match of the rule which means
that both a and b must have been evaluated. The most basic component of this AST is an atom. We want to say that an atom can
also be another expression, one can not just redefine atom to equal:

atom : INT | expr ;

This would generate some infinite recursion errors:

expression.g:8: infinite recursion to rule sumExpr from rule atom
expression.g:7: infinite recursion to rule sumExpr from rule powExpr
expression.g:6: infinite recursion to rule sumExpr from rule prodExpr
expression.g:5: infinite recursion to rule sumExpr from rule sumExpr
expression.g:8: infinite recursion to rule sumExpr from rule atom

Imagine the case of an out of place token. The parser would check the token against all the rules and find that it did not make a
match, it would reach the bottom and check it against atom, it would find that INT did not match so it would then check it against
expr which would cause another check through all the rules and so on, forever. So expr has to be redefined as:

expr : LPAREN^ sumExpr RPAREN! ;

This redefinition is crucial, LPAREN and RPAREN are tokens defined in the lexer and represent '(' and ')' respectively. This rule
says to match LPAREN followed by a sumExpr followed by RPAREN. LPAREN is postfixed with a caret ('^') which indicates that
in the generated AST LPAREN should become a tree root and have the child sumExpr, RPAREN does not become a child because
it is prefixed with an exclamation mark, this is because it is unnecessary in the final AST. SEMI was also removed so that nested
expressions do not have to be terminated by a SEMI.
If the out of place token arose again, the parser could not get in an infinite loop because the expr rule begins with a LPAREN,
hence if the token did not match LPAREN the parser would immediately throw a noViableAltException. There is no way the rogue
token could get past the expr rule. Here is the new parser definition in one block:

expr : LPAREN^ sumExpr RPAREN! ;
sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;
prodExpr : powExpr ((MUL^|DIV^|MOD^) powExpr)* ;
powExpr : atom (POW^ atom)? ;
atom : INT | expr ;

So now an expr can recursively contain as many expr's as is desired. What should the treeparser do when it encounters a tree or
subtree with LPAREN as root and an expr as a child? The desired action is to return the value of the evaluation of the child. The
addition of this rule into the tree parser achieves this:

ANTLR

16

| #(LPAREN a=expr) { r=a;}

This rule matches an AST with a LPAREN as root and an expr as a child. The result of the evaluation of expr is assigned to the a
variable which in turn is assigned to the r variable, hence r will not receive a value until a does and a will not receive a value until
expr has been matched. Causing a knock on evaluation of all subtrees of expr in order to match the original expr, this may include
evaluation of other expr''s.
Eventually all leaves of the AST must be INT's, unless an infinite number of sub expressions were contained within the master ex-
pression, this is unlikely. It is assumed that the person creating the expression has their sanity intact and is not attempting to gener-
ate some kind of crazy AST that will keep calling expr billions of recursive levels down, in order to match some infinite order of
nested expr', pertaining to the match of a master expr, I am not sure if this is even possible.
In the normal world, the calls to expr will return a final value as a result of all these INT leaves being used in the various opera-
tions specified in the expression. The values of these operations will work there way up the recursive levels until eventually the
original expr has been matched, whereupon, a will be assigned the value of the expr, r will be assigned the value of a and r will be
returned.
To restate: Whenever an LPAREN is encountered, the sub-expression will be evaluated, the evaluation of the sub-expression will
return a value which will then be used in the evaluation of the expr that had the sub-expression as a child. The result evaluation of
this, may in turn, be used in the evaluation of the parent expr until no more parent expr's are present and the master expr has been
evaluated.
An AST illustrating this should help to clarify things, here is an AST of the expression (5*(2+3)):

Figure 6. AST of (5*(2+3))

The root of the tree is an expr signified by the open bracket 'LPAREN' as expected. It's child is a prodExpr whose first child is an
atom which is an INT equal to five and whose second child is another atom but this time a expr whose child is a prodExpr contain-
ing two children which are both atom's and are INT's which are equals to the values two and three respectively. Here is another il-
lustration of this AST to help clarify things:

Figure 7. Another View of (5*(2+3))

ANTLR

17

Here is the whole grammar: expression2.g [files/expression2.g]. The Main method used to run it is the same as for the original ex-
pression evaluator.

Note
Adding subexpressions also solves the problem of being limited to a single level of exponential, the ambiguous expres-
sion (2^5^5) can be respecified as (2^(5^)) to get the desired result.

9.2. Adding The Sign Operator
The sign operator has a higher precedence than any of the operators already defined in this expression evaluator, hence, it's rule
will occur just above atom. There is no need to use syntactic predicates to distinguish between dyadic and monadic use of the
PLUS and MINUS operators, this is implied by the context in which the expression is used. If trying to match the dyadic use of the
PLUS and MINUS operators, the parser will expect to see the operator infixed between two prodExpr's, where as, in the monadic
sense, the parser will expect to see the operator prefixing an atom. Here is how it is done:

imaginaryTokenDefinitions :
SIGN_MINUS
SIGN_PLUS

;

expr : LPAREN^ sumExpr RPAREN! ;
sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;
prodExpr : powExpr ((MUL^|DIV^|MOD^) powExpr)* ;
powExpr : signExpr (POW^ signExpr)? ;
signExpr : (

m:MINUS^ {#m.setType(SIGN_MINUS);}
| p:PLUS^ {#p.setType(SIGN_PLUS);}
)? atom ;

atom : INT | expr ;

Ignore the imaginary token business for now, this will be explained later.
Consider the matching of the expression (-3- -2). The first token is LPAREN which is matched by expr. The second token is MI-
NUS so the parser checks whether this token can be a sumExpr which is the rule it is trying to match to match the expr that has just
been opened. Is the first token of sumExpr a MINUS? No, it's a subrule so prodExpr is called to find out if the first token of that
rule is a MINUS. Is the first token of prodExpr a MINUS? No, it's a subrule so powExpr is called to find out if the first token of
that rule is a MINUS. Is the first token of powExpr a MINUS? No, it's a subrule so signExpris called to find out if the first token of
that rule is a MINUS.

ANTLR

18

files/expression2.g

Is the first token of signExpr a MINUS? Yes, it is! Brilliant, but, the MINUS must be followed by an atom for signExpr to match.
The next token is an INT(3) which is an atom so finally something has been matched, a signExpr has been matched. Hang-on, let's
not get carried away here, this whole process stemmed from the fact that the parser was trying to match the first token of sumExpr
because it's parent expr must contain one. This caused calls to all the subrules ending up at signExpr. Now that a match has oc-
curred the parser works it's way back up the recursive levels and discovers that it has matched a powExpr because a powExpr may
consist of just a signExpr which in turn means it has matched a prodExpr because a prodExpr can consist of just a powExpr, then
it discovers that it has also matched a sumExpr because a sumExpr can consist of just a prodExpr, effectively it has almost
matched an expr because if the next token is a RPAREN the expr would be finished. However, the sumExpr rule may not be fin-
ished so first the parser must check to see if next token matches the next token of the sumExpr rule.

sumExpr : prodExpr ((PLUS^|MINUS^) prodExpr)* ;

The next token of the sumExpr rule is PLUS OR MINUS, the next token in the expression being matched is MINUS, hence the MI-
NUS in prodExpr is matched. There cannot be any ambiguity here because signExpr is not an alternative at this point. There is no
rule which goes (prodExpr signExpr) so sumExpr is the only possible route, if sumExpr is not matched, expr will not be matched
(because expr would be expecting RPAREN) and the expression will fail. The parser will finish checking whether or not this rule
matches before doing anything else anyway, so even if there was a (prodExpr signExpr) rule (occurring later in the parser), sum-
Expr would have to fail for that to be checked. There is no other rule so the parser does match the MINUS in sumExpr and the
matching of sumExpr goes on as expected.
The parser has just matched the MINUS in sumExpr, it now tries to match prodExpr which is the third component of sumExpr.
prodExpr is matched in exactly the same manner that the first prodExpr was matched. This means that sumExpr has been matched
and the parser has matched the second token of expr. The parser now expects RPAREN from the lexer, which it gets, and expr is
successfully matched. Here is a ridiculously over the top illustration of this process [files/images/sillyastthing.png].
Hopefully I have not obfuscated the working of this rule. Let's take a closer look at the workings of it:

signExpr : (
m:MINUS^ {#m.setType(SIGN_MINUS);}
| p:PLUS^ {#p.setType(SIGN_PLUS);}
)? atom ;

First of all, note that the first part of signExpr is enclosed within parentheses postfixed with a question mark indicating that a sign-
Expr can be either an atom or a sign symbol followed by an atom. The rule says that if a MINUS or PLUS is encountered, the MI-
NUS or PLUS should become the root of a new subtree with atom as the only child. This is exactly the desired behaviour since by
making the atoma child, we can recognise the root in the tree from the tree parser and perform some action on this child. This is
where the imaginary tokens come in:

m:MINUS^

Assigns the root node MINUS to the variable 'm'

{#m.setType(SIGN_MINUS);}

Replaces this root node in the tree with the token SIGN_MINUS instead of MINUS. This is done because the tree is already using
the root MINUS to recognise that it should perform a dyadic subtraction operation:

| #(MINUS a=expr b=expr) { r=a-b; }

In order not to have some kind of syntactic predicate to determine which kind of MINUS operation to perform, another token is
created to represent the monadic MINUS operation called SIGN_MINUS. The same thing is done for the PLUS operator:

imaginaryTokenDefinitions :
SIGN_MINUS
SIGN_PLUS

;

When parsing the AST, the tree parser knows exactly which kind of operation to perform. The full tree parser section is shown be-
low:

{import java.lang.Math;}
class ExpressionTreeWalker extends TreeParser;

expr returns [double r]
{ double a,b; r=0; }

: #(PLUS a=expr b=expr) { r=a+b; }
| #(MINUS a=expr b=expr) { r=a-b; }
| #(MUL a=expr b=expr) { r=a*b; }

ANTLR

19

files/images/sillyastthing.png
files/images/sillyastthing.png
files/images/sillyastthing.png
files/images/sillyastthing.png
files/images/sillyastthing.png
files/images/sillyastthing.png
files/images/sillyastthing.png
files/images/sillyastthing.png

| #(DIV a=expr b=expr) { r=a/b; }
| #(MOD a=expr b=expr) { r=a%b; }
| #(POW a=expr b=expr) { r=Math.pow(a,b); }
| #(LPAREN a=expr) { r=a; }
| #(SIGN_MINUS a=expr) { r=-1*a; }
| #(SIGN_PLUS a=expr) { if(a<0)r=0-a; else r=a; }
| i:INT { r=(double)Integer.parseInt(i.getText()); }
;

If a SIGN_MINUS root is encountered, the desired consequence is to negate the sign of the operand, this is achieved by multiply-
ing the operand by -1. If a SIGN_PLUS root is encountered, the desired consequence is to do nothing if the operand is already pos-
itive and to make the operand positive if it is negative, this is achieved by having a conditional statement which subtracts the
operand from zero if it is negative and does nothing to the operand otherwise. The whole grammar can be found here: expres-
sion3.g [files/expression3.g]. The Main method used to run it is the same as for the original expression evaluator.

Note
As pointed out to me by Safak Oekmen, this interpretation of SIGN_PLUS is quite strange; usually one would not assume
that a positive sign prefix would change the sign of a following negative number to positive. However, this doesn't affect
the pedagogical implications of the example if SIGN_PLUS takes on the indicated role so it will be left as is.

Let's look at an example run through of the expression (-3- -2), it is assumed that ANTLR has been ran on the grammar, all
classes compiled and the expression fed to the lexer via Main. Here is the stringList and value printed:

(((- (- 3) (- 2)))
Value: -1.0

Here is the AST produced:

Figure 8. (-3- -2) AST

Here are some more AST's:

Figure 9. A few AST's

ANTLR

20

files/expression3.g

Note
In the parser for the expression evaluator, a top level expression was specified as:

expr : LPAREN^ sumExpr RPAREN! ;

If we were reading the expression from a file, this rule should actually be:

expr : LPAREN^ sumExpr RPAREN! EOF! ;

So that the EOF(End Of File), token is matched and the whole rule is matched, as it happens, the parser will match as
much as it can anyway, so it matches enough to build the AST. The inclusion of EOF in the rule would not allow us to
enter expressions at the command line unless one had a way to specify the EOF character. Bear this note in mind when
constructing parsers that read from files.

10. A Translation Example - CSV to XHTML Table
A Lexer translates from a stream of characters to a stream of Tokens. A parser recognises certain sequences of Tokens and per-
forms actions based on this recognition such as perhaps converting the sequence to a sequence of machine language instructions to
be executed later, or perhaps generating an AST for later transversal. The more usual of the two would be to first generate an AST
- another translation - and then this AST would later be parsed itself to generate some other form of output. Compilation can be
seen as a series of translations, this section will illustrate the idea of translation with a simple ANTLR example that translates a
comma separated variable (CSV) file to an XHTML table.
A CSV is a very simple kind of data structure; variables separated by commas and newlines to create a kind of table. An example
will clarify this:

"STUDENT ID, "NAME, "DATE OF BIRTH
"129384, "Davy Jones, "03/04/81
"328649, "Clare Manstead, "30/11/81
"237090, "Richard Stoppit, "22/06/82
"523343, "Brian Hardwick, "15/11/81
"908423, "Sally Brush, "06/06/81
"328453, "Elisa Strudel, "12/09/82
"883632, "Peter Smith, "03/05/83
"542033, "Ryan Alcot, "04/12/80

The translator developed in this section will translate CSV's of this type. The structure of the CSV will be discussed whilst simul-
taneously developing the parser. This will illustrate the very first translation, that of translating from general ideas about the struc-
ture of a file to an ANTLR parser capable of recognising this structure.
The CSV file is composed of one or more lines and terminates with an EOF token:

file : (line (NEWLINE line)* (NEWLINE)? EOF)

ANTLR

21

A line consists of one or more records, NEWLINE is handled by file.

line : ((record)+) ;

A record consists of a RECORD token, optionally followed by a COMMA token (because tokens at the end of a line or file are not
followed by a COMMA):

record : ((r:RECORD) (COMMA)?) ;

Notice that the last line of the CSV is an exceptional case because it terminates with EOF instead of NEWLINE, this is handled by
the file rule, which says that a file begins with a line, has zero or more (NEWLINE line) sequences then has an optional NEWLINE
and then finally terminates with an EOF token.

class CSVParser extends Parser;
file : (line (NEWLINE line)* (NEWLINE)? EOF)
line : ((record)+) ;
record : ((r:RECORD) (COMMA)?) ;

It is coupled with this lexer:

class CSVLexer extends Lexer;
options { charVocabulary='\3'..'\377'; }
RECORD : '"'! (~(','|'\r'|'\n'))+ ;
COMMA : ',' ;
NEWLINE : ('\r''\n')=> '\r''\n' //DOS

| '\r' //MAC
| '\n' //UNIX
{ newline(); }
;

WS : (' '|'\t') { $setType(Token.SKIP); } ;

First of all, charVocabulary is set to '\3'..'\377', this defines the set of Unicode characters that characters in the inputstream must
belong to. It also implicitly defines which characters will be used as alternatives when an "everything except" kind of rule is speci-
fied.
RECORD is an example of an "everything except" rule and says that a RECORD consists of one or more characters in the defined
character range, except comma, carriage-return or newline. Notice that RECORD was defined as starting with a double quote char-
acter, this format was chosen so that the user could include records with spaces in with more ease. If this double quote was not
used to signify the start of a record, the record would consist of all characters from the start of the record up-to the next comma,
this would include spaces. If a nicely aligned CSV like:

Dave, 21
Richard, 55
Peter, 98

Was used, then the records would be "Dave",

" 21"
, "Richard", "55 ", "Peter" and

" 98"
, which is probably not what is desired. Of course, one could process the tokens afterward to strip leading and trailing spaces, but
then what if some of the tokens should contain leading or trailing spaces? It was decided that in this example the records would be
defined in this way. You could play around with these design issues yourself as a learning experience. One more thing to note
about this is that the double quote is postfixed with an exclamation mark so that the double quote itself is not included in the actual
text of the token. The rest of the lexer rules are self-explanatory.
If this lexer and parser were used to process a CSV file, nothing would happen except the rules would be matched correctly and
the program would terminate with an exit status of zero. For illustration, I added some print statements to the lexer so that it would
print out when a rule was called and if it was matched and what the record was:

class CSVParser extends Parser;
options { k=2; }
file {System.out.println("file called");}

: (line (NEWLINE line)* (NEWLINE)? EOF)
{System.out.println("file matched");}
;

line {System.out.println("line called");}
: ((record)+)
{System.out.println("line matched");}
;

record {System.out.println("record called");}

ANTLR

22

: ((r:RECORD) (COMMA)?)
{System.out.println("record = " + r.getText());
System.out.println("record matched");}

;

Notice the lookahead of two to distinguish between (NEWLINE line) and (NEWLINE) EOF. The parser was ran (via a Main
method explained later), on the following file:

"David Sprocket, "89
"Cindy Brocket, "18
"Michael Rocket, "33

The output that was produced is shown below (reformatted by hand to make it clearer):

file called
line called

record called
record = David Sprocket

record matched

record called
record = 89

record matched
line matched

line called
record called
record = Cindy Brocket

record matched

record called
record = 18

record matched
line matched

line called
record called
record = Michael Rocket

record matched

record called
record = 33

record matched
line matched

file matched

The ANTLR grammar so far can be downloaded here: csv1.g [files/translate/csv1.g]. It is quite obvious from the output that the
parser is performing as it should. To produce a HTML table, one only has to change the output statements so that instead of the
parser outputting "file called", or whatever, it outputs "<table>" instead or whatever the HTML equivalent should be. The parser,
modified to output HTML statements is shown below:

class CSVParser extends Parser;
options { k=2; }
file {System.out.println("<table align=\"center\" border=\"1\">");}

: (line (NEWLINE line)* (NEWLINE)? EOF)
{System.out.println("</table>");}
;

line {System.out.println(" <tr>");}
: ((record)+)
{System.out.println(" </tr>");}
;

record {System.out.print(" <td>");}
: ((r:RECORD) (COMMA)?)
{System.out.print(r.getText());
System.out.println("</td>");}

;

The output produced when processing the same file as before is:

<table align="center" border="1">
<tr>

<td>David Sprocket</td>
<td>89</td>

<tr/>
<tr>

ANTLR

23

files/translate/csv1.g

<td>Cindy Brocket</td>
<td>18</td>

<tr/>
<tr>

<td>Michael Rocket</td>
<td>33</td>

<tr/>
</table>

Which is what was intended of the translator. Apart from perhaps to mess around with how the output should look all that is
needed now is to output the rest of the HTML file. Generation of the rest of the HTML file could be done in the parser by adding
more to the file rule but this would clutter the parser, instead let's designate this task to the class implementing this parser and
lexer. A main method could be placed in the parser part of the grammar so that, when the parser is generated, it has a main method
that can be executed. Alternatively a separate class could be created that has a main method which implements the translator. This
example will use a separate class. Here is that separate class:

import java.io.*;
public class Main {

public static void main(String args[]) {
if(args.length==0) { error(); }

FileInputStream fileInput = null;
try {

fileInput = new FileInputStream(args[0]);
} catch(Exception e) { error(); }

try {
DataInputStream input = new DataInputStream(fileInput);

CSVLexer csvLexer = new CSVLexer(input);
CSVParser csvParser = new CSVParser(csvLexer);
csvParser.file();

} catch(Exception e) { System.err.println(e.getMessage()); }
}

private static void error() {
System.out.println("*- -*");
System.out.println("| USAGE: |");
System.out.println("| java Main inputfile |");
System.out.println("*- -*");
System.exit(0);

}
}

The program first checks that the one compulsory command line argument has been provided. If it has not the program prints an
error and exits. If it has, the program creates a new FileInputStream from the file specified, if there are any errors an error is
printed and the program exits. If there are no errors the program enters another try block where a DataInputStream is setup using
the file, the lexer created with this stream, the parser created with this lexer and then the parsers file method is called. If there are
any Exceptions thrown, they are caught and the message that came along with it is printed.

1. The Main program used to run the translator can be downloaded here: Main.java [files/translate/Main.java].

2. The full grammar file can be downloaded here: csv2.g [files/translate/csv2.g].

3. Some test data can be downloaded here: test.txt [files/translate/test.txt]

At the moment the parser outputs to stdout, this is not very useful. It would be more useful if the parser returned a string of the
HTML output so that the calling class could do whatever it wanted with it, such as outputting it to a file. The parser must be modi-
fied to return a string:

class CSVParser extends Parser;
options { k=2; }
file returns[String table = new String()]

{String lineData; table+="<table align=\"center\" border=\"1\">\n"; }
: (lineData=line {table+=lineData;}

(NEWLINE lineData=line {table+=lineData;})*
(NEWLINE)? EOF)

{table+="</table>";}
;

line returns [String lineData = new String()]
{String recordData; lineData+=" <tr>\n";}
: ((recordData=record {lineData+=recordData;})+)
{lineData+=" <tr/>\n";}
;

ANTLR

24

files/translate/Main.java
files/translate/csv2.g
files/translate/test.txt

record returns [String recordData = new String()]
{recordData+=(" <td>");}
: ((rec:RECORD) (COMMA)?)
{recordData+=(rec.getText());
recordData+="</td>\n";}

;

The full grammar can be downloaded here: csv3.g [files/translate/csv3.g].
Within file: Immediately the opening table element is appended to the String table defined within the file rule. The first line is
matched, and the value returned assigned to the variable lineData this is appended to table. Zero or more lines are matched, and in
the process, the values returned from the call to line to match each line are assigned to the variable lineData which is appended to
table.

line returns [String lineData = new String()]
{String recordData; lineData+=" <tr>\n";}
: ((recordData=record {lineData+=recordData;})+)
{lineData+=" <tr/>\n";}
;

Within line: Immediately the opening <tr> element is appended to the lineData variable, one or more records are matched, and
each time the value returned from the call to record to match a record is assigned to the variable recordData which is then ap-
pended to lineData.

record returns [String recordData = new String()]
{recordData+=(" <td>");}
: ((rec:RECORD) (COMMA)?)
{recordData+=(rec.getText());
recordData+="</td>\n";}

;

Within record: Immediately the opening td element is appended to the string recordData. A RECORD token is matched and as-
signed to the rec variable, the textual content of this is then appended to recordData and the closing </td> appended to record-
Data. The completed record in the form of recordData is returned to line.
line receives recordData and this is used in the construction of lineData, when all the records have been matched for a line the
closing </tr> is appended to lineData and lineData returned.
file receives lineData and this is used in the construction of table, when all the lines have been matched for the file the closing /
<table> tag is appended to table and table returned to the class that instantiated the parser.
Here is the new main method containing class:

import java.io.*;
public class CSVhtml {

public static void main(String args[]) {
if(args.length!=2) { error(); }

FileInputStream fileInput = null;
DataOutputStream fileOutput = null;
try {

fileInput = new FileInputStream(args[0]);
fileOutput = new DataOutputStream(new FileOutputStream(args[1]));

} catch(Exception e) { error2(); }

try {
DataInputStream input = new DataInputStream(fileInput);

CSVLexer csvLexer = new CSVLexer(input);
CSVParser csvParser = new CSVParser(csvLexer);
String p ="";
p ="<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";
p+="<!DOCTYPE html\n";
p+="PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"\n";
p+="\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">\n";
p+="<html>\n";
p+=" <head>\n";
p+=" <title>A Table</title>\n";
p+=" <meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\"/>\n";
p+=" </head>\n";
p+=" <body>\n";
p+= csvParser.file();
p+=" </body>\n";
p+="</html>";
fileOutput.writeBytes(p);
fileOutput.close();

} catch(Exception e) { System.err.println(e.getMessage()); }
}

ANTLR

25

files/translate/csv3.g

private static void error() {
System.out.println("*- -*");
System.out.println("| USAGE: |");
System.out.println("| java CSVhtml inputfile outputfile |");
System.out.println("*- -*");
System.exit(0);

}

private static void error2() {
System.out.println("*- -*");
System.out.println("| You must specify a valid inputfile |");
System.out.println("*- -*");
System.exit(0);

}
}

The program shown above can be downloaded here: CSVHTML.java [files/translate/CSVHTML.java]. The program works like
this: It is first checked that the command-line arguments are present, if they are, a DataInputStream is created for the inputfile
which is specified by the first command-line argument and a DataOutputStream created for the outputfile which is specified by
the second command-line argument. The lexers and parsers are created. A string is created and the HTML prologue appended. The
string returned from calling the parsers file method is appended to this string. The HTML closure is appended to the string and the
the string is output to the file supplied.
After the grammar is converted to a lexer, parsed by ANTLR and everything compiled, the program can be executed like this:

java CSVHTML inputfile outputfile

The table produced from executing the command:

java CSVHTML test.txt output.html

Looks, under a certain proprietary web-browser, like this:

Figure 10. test.txt expressed as a table

11. Snippets From Behind The Scenes
When the lexer tokenizes the input stream, each token encountered is catagorized into the type of token it is, such as a NEWLINE
token. A table of these token types is created and each token type is represented by an integer. The integers 1-3 are special in that
they denote predefined token types, user defined tokens are assigned an integer to represent them starting from 4. The integers are
mapped to human readable identifiers in a token types file generated by ANTLR, for example:

// $ANTLR 2.7.1: "csv.g" -> "CSVParser.java"$

public interface CSVParserTokenTypes {
int EOF = 1;
int NULL_TREE_LOOKAHEAD = 3;
int NEWLINE = 4;
int RECORD = 5;

ANTLR

26

files/translate/CSVHTML.java

int COMMA = 6;
int WS = 7;

}

There is a class called TokenBuffer whose job it is to buffer the tokens provided by the lexer. It contains a method called LA which
has one parameter, an integer, which determines the token in the token buffer to return, for example LA(1) would return the integer
value of the next token in the TokenBuffer. The parser uses a series of calls to LA to match the rules it implements, for example:

// Note, I have cleaned this up a little, ANTLR generates things like
// { {instructions} {instructions} } which can be represented as
// { instructions instructions }
public final void file() throws RecognitionException, TokenStreamException {

try { // for error handling
System.out.println("file called");
int _cnt3=0;
_loop3:
do {

if ((LA(1)==RECORD)) {
line();

} else {
if (_cnt3>=1) { break _loop3; }
else {throw new NoViableAltException(LT(1), getFilename());}

}
_cnt3++;

} while (true);
} catch (RecognitionException ex) {

reportError(ex);
consume();
consumeUntil(_tokenSet_0);

}

TokenBuffer provides tokens via LT and tokens via LA. TokenBuffer gets it's tokens for buffering by calling, the method nextTo-
ken which is defined in the Lexer. The method nextToken in the Lexer generated for the CSV translator looks like this:

// Cleaned up a little by me
public Token nextToken() throws TokenStreamException {

Token theRetToken=null;
tryAgain:

for (;;) {
Token _token = null;
int _ttype = Token.INVALID_TYPE;
resetText();
try { // for char stream error handling

try { // for lexical error handling
switch (LA(1)) {

case ',': {
mCOMMA(true);
theRetToken=_returnToken;
break;

}

case '\n': case '\r': {
mNEWLINE(true);
theRetToken=_returnToken;
break;

}

case '\t': case ' ': {
mWS(true);
theRetToken=_returnToken;
break;

}

default:
if ((_tokenSet_0.member(LA(1)))) {

mRECORD(true);
theRetToken=_returnToken;

} else {
if (LA(1)==EOF_CHAR) {uponEOF(); _returnToken = makeToken(Token.EOF_TYPE);}
else {throw new NoViableAltForCharException((char)LA(1), getFilename(), getLine());}

}
}
if (_returnToken==null) continue tryAgain; // found SKIP token

_ttype = _returnToken.getType();
_ttype = testLiteralsTable(_ttype);
_returnToken.setType(_ttype);
return _returnToken;

} catch (RecognitionException e) {

ANTLR

27

throw new TokenStreamRecognitionException(e);
}

} catch (CharStreamException cse) {
if (cse instanceof CharStreamIOException) {

throw new TokenStreamIOException(((CharStreamIOException)cse).io);
} else {

throw new TokenStreamException(cse.getMessage());
}

}
}

}

Notice the bit that says:

if (LA(1)==EOF_CHAR) {uponEOF(); _returnToken = makeToken(Token.EOF_TYPE);}
else {throw new NoViableAltForCharException((char)LA(1), getFilename(), getLine());}

This says if the token found is an EOF_CHAR, call the uponEOF method and assign a new EOF_TYPE token to _returnToken,
which is returned later in this method.
The code below shows rec being assigned the Token returned from LT, later, the getText() method is invoked on rec to get the to-
kens textual content.

{
rec = LT(1);
match(RECORD);
}
.
.
.
recordData+=(rec.getText());
recordData+="</td>\n";

12. Thanks
Thanks go to Bogdan Mitu for showing me the way with the translator example file rule and Ric Klaren for showing me how
blindingly simple it was to do the nested return statements in the translator example.

13. References (And links you may find useful)

• http://www.antlr.org/book/index.html

Practical Computer Language Recognition and Translation
A guide for building source-to-source translators with ANTLR and Java.

Copyright 1999 Terence Parr

Updated 2/1/99

• http://www.antlr.org/article/list
ANTLR articles page - lots of interesting things.

• http://www.antlr.org/doc/getting-started.html
Getting Started with ANTLR.

• http://javadude.com/articles/antlrtut/
An ANTLR Tutorial by Scott Stanchfield

• http://topaz.cs.byu.edu/text/html/Textbook/
Compiler Theory And Design

• The ANTLR Reference Manual
Comes included with the ANTLR installation

ANTLR

28

http://www.antlr.org/book/index.html
http://www.antlr.org/article/list
http://www.antlr.org/doc/getting-started.html
http://javadude.com/articles/antlrtut/
http://topaz.cs.byu.edu/text/html/Textbook/

	ANTLR
	Table of Contents
	1. Introduction
	2. Background Information
	2.1. The Lexer
	2.2. The Parser
	2.3. What is ANTLR's part in all this?

	3. Installation
	4. ANTLR Grammar Template
	5. ANTLR Notation
	5.1. Zero Or More
	5.2. One Or More
	5.3. Optional

	6. Lexer Example
	7. Simple Lexer/Parser Example
	8. Expression Evaluation Example
	9. Extending The Expression Evaluator
	9.1. Nested Expressions
	9.2. Adding The Sign Operator

	10. A Translation Example - CSV to XHTML Table
	11. Snippets From Behind The Scenes
	12. Thanks
	13. References (And links you may find useful)

